Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (100+200*(4-x))*(4-x-2) = 0 .
    Question type: Equation
    Solution:Original question:
     (100 + 200(4 x ))(4 x 2) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 100(4 x 2) + 200(4 x )(4 x 2)
                                             = 100 × 4100 x 100 × 2 + 200(4 x )(4 x 2)
                                             = 400100 x 200 + 200(4 x )(4 x 2)
                                             = 200100 x + 200(4 x )(4 x 2)
                                             = 200100 x + 200 × 4(4 x 2)200 x (4 x 2)
                                             = 200100 x + 800(4 x 2)200 x (4 x 2)
                                             = 200100 x + 800 × 4800 x 800 × 2200 x (4 x 2)
                                             = 200100 x + 3200800 x 1600200 x (4 x 2)
                                             = 1800900 x 200 x (4 x 2)
                                             = 1800900 x 200 x × 4 + 200 x x + 200 x × 2
                                             = 1800900 x 800 x + 200 x x + 400 x
                                             = 18001300 x + 200 x x
    The equation is transformed into :
     18001300 x + 200 x x = 0

    After the equation is converted into a general formula, it is converted into:
    ( x - 2 )( 2x - 9 )=0
    From
        x - 2 = 0
        2x - 9 = 0

    it is concluded that::
        x1=2
        x2=
9
2
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。