| ( | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | ) | ÷ | ( | ( | 4 | − | 2 | x | ) | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) | ) | = | 9 250 |
| Multiply both sides of the equation by: | ( | ( | 4 | − | 2 | x | ) | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) | ) |
| ( | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | ) | = | 9 250 | ( | ( | 4 | − | 2 | x | ) | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) | ) |
| ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 9 250 | ( | ( | 4 | − | 2 | x | ) | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) | ) |
| ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 9 250 | ( | 4 | − | 2 | x | ) | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
6 5 | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | + | 3 | x | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 9 250 | ( | 4 | − | 2 | x | ) | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
6 5 | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | + | 3 | x | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 9 250 | × | 4 | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) | − | 9 250 | × | 2 | x | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
6 5 | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | + | 3 | x | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 18 125 | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) | − | 9 125 | x | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
6 5 | × | 6 5 | ( | 6 5 | + | 3 | x | ) | + | 6 5 | × | 3 | x | ( | 6 5 | + | 3 | x | ) | + | 3 | x | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 18 125 | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) | − | 9 125 | x | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
6 5 | × | 6 5 | ( | 6 5 | + | 3 | x | ) | + | 6 5 | × | 3 | x | ( | 6 5 | + | 3 | x | ) | + | 3 | x | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 18 125 | × | 4 | ( | 3 | − | x | ) | − | 18 125 | × | 2 | x | ( | 3 | − | x | ) | − | 9 125 | x | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
36 25 | ( | 6 5 | + | 3 | x | ) | + | 18 5 | x | ( | 6 5 | + | 3 | x | ) | + | 3 | x | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 72 125 | ( | 3 | − | x | ) | − | 36 125 | x | ( | 3 | − | x | ) | − | 9 125 | x | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
36 25 | × | 6 5 | + | 36 25 | × | 3 | x | + | 18 5 | x | ( | 6 5 | + | 3 | x | ) | + | 3 | x | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 72 125 | ( | 3 | − | x | ) | − | 36 125 | x | ( | 3 | − | x | ) | − | 9 125 | x | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
36 25 | × | 6 5 | + | 36 25 | × | 3 | x | + | 18 5 | x | ( | 6 5 | + | 3 | x | ) | + | 3 | x | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 72 125 | × | 3 | − | 72 125 | x | − | 36 125 | x | ( | 3 | − | x | ) | − | 9 125 | x | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
216 125 | + | 108 25 | x | + | 18 5 | x | ( | 6 5 | + | 3 | x | ) | + | 3 | x | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 216 125 | − | 72 125 | x | − | 36 125 | x | ( | 3 | − | x | ) | − | 9 125 | x | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
216 125 | + | 108 25 | x | + | 18 5 | x | × | 6 5 | + | 18 5 | x | × | 3 | x | + | 3 | x | = | 216 125 | − | 72 125 | x | − | 36 125 | x | ( | 3 | − | x | ) | − | 9 125 | x | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
216 125 | + | 108 25 | x | + | 18 5 | x | × | 6 5 | + | 18 5 | x | × | 3 | x | + | 3 | x | = | 216 125 | − | 72 125 | x | − | 36 125 | x | × | 3 | + | 36 125 | x | x | − | 9 125 | x | ( | 4 | − | 2 | x | ) |
216 125 | + | 108 25 | x | + | 108 25 | x | + | 54 5 | x | x | + | 3 | x | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 216 125 | − | 72 125 | x | − | 108 125 | x | + | 36 125 | x | x | − | 9 125 | x | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
216 125 | + | 216 25 | x | + | 54 5 | x | x | + | 3 | x | ( | 6 5 | + | 3 | x | ) | ( | 6 5 | + | 3 | x | ) | = | 216 125 | − | 36 25 | x | + | 36 125 | x | x | − | 9 125 | x | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
216 125 | + | 216 25 | x | + | 54 5 | x | x | + | 3 | x | × | 6 5 | ( | 6 5 | + | 3 | x | ) | + | 3 | x | = | 216 125 | − | 36 25 | x | + | 36 125 | x | x | − | 9 125 | x | ( | 4 | − | 2 | x | ) | ( | 3 | − | x | ) |
216 125 | + | 216 25 | x | + | 54 5 | x | x | + | 3 | x | × | 6 5 | ( | 6 5 | + | 3 | x | ) | + | 3 | x | = | 216 125 | − | 36 25 | x | + | 36 125 | x | x | − | 9 125 | x | × | 4 | ( | 3 | − | x | ) | + | 9 125 | x |
216 125 | + | 216 25 | x | + | 54 5 | x | x | + | 18 5 | x | ( | 6 5 | + | 3 | x | ) | + | 9 | x | x | = | 216 125 | − | 36 25 | x | + | 36 125 | x | x | − | 36 125 | x | ( | 3 | − | x | ) | + | 18 125 | x | x |
216 125 | + | 216 25 | x | + | 54 5 | x | x | + | 18 5 | x | × | 6 5 | + | 18 5 | x | × | 3 | = | 216 125 | − | 36 25 | x | + | 36 125 | x | x | − | 36 125 | x | ( | 3 | − | x | ) | + | 18 125 | x | x |
216 125 | + | 216 25 | x | + | 54 5 | x | x | + | 18 5 | x | × | 6 5 | + | 18 5 | x | × | 3 | = | 216 125 | − | 36 25 | x | + | 36 125 | x | x | − | 36 125 | x | × | 3 | + | 36 125 | x | x |
216 125 | + | 216 25 | x | + | 54 5 | x | x | + | 108 25 | x | + | 54 5 | x | x | + | 9 | = | 216 125 | − | 36 25 | x | + | 36 125 | x | x | − | 108 125 | x | + | 36 125 | x | x | + | 18 125 |
216 125 | + | 324 25 | x | + | 54 5 | x | x | + | 54 5 | x | x | + | 9 | x | x | = | 216 125 | − | 288 125 | x | + | 36 125 | x | x | + | 36 125 | x | x | + | 18 125 | x | x |
216 125 | + | 324 25 | x | + | 54 5 | x | x | + | 54 5 | x | x | + | 9 | x | x | = | 216 125 | − | 288 125 | x | + | 36 125 | x | x | + | 36 125 | x | x | + | 18 125 | x | x |