Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation k/(k*k+2*k) = {[(1-4*k*k)-1]/(k*k+1)-1}/5/{(k*k+1)-2*k} .
    Question type: Equation
    Solution:Original question:
      k ÷ ( k k + 2 k ) = (((14 k k )1) ÷ ( k k + 1)1) ÷ 5 ÷ (( k k + 1)2 k )
     Multiply both sides of the equation by:( k k + 2 k ) ,  (( k k + 1)2 k )
      k (( k k + 1)2 k ) = (((14 k k )1) ÷ ( k k + 1)1) ÷ 5 × ( k k + 2 k )
    Remove a bracket on the left of the equation::
      k ( k k + 1) k × 2 k = (((14 k k )1) ÷ ( k k + 1)1) ÷ 5 × ( k k + 2 k )
    Remove a bracket on the right of the equation::
      k ( k k + 1) k × 2 k = ((14 k k )1) ÷ ( k k + 1) ÷ 5 × ( k k + 2 k )1 ÷ 5 × ( k k + 2 k )
    The equation is reduced to :
      k ( k k + 1) k × 2 k = ((14 k k )1) ÷ ( k k + 1) ×
1
5
( k k + 2 k )
1
5
( k k + 2 k )
     Multiply both sides of the equation by:( k k + 1)
      k ( k k + 1)( k k + 1) k × 2 k ( k k + 1) = ((14 k k )1) ×
1
5
( k k + 2 k )
1
5
( k k + 2 k )( k k + 1)
    Remove a bracket on the left of the equation:
      k k k ( k k + 1) + k × 1( k k + 1) k × 2 k ( k k + 1) = ((14 k k )1) ×
1
5
( k k + 2 k )
1
5
( k k + 2 k )( k k + 1)
    Remove a bracket on the right of the equation::
      k k k ( k k + 1) + k × 1( k k + 1) k × 2 k ( k k + 1) = (14 k k ) ×
1
5
( k k + 2 k )1 ×
1
5
( k k + 2 k )
1
5
( k k + 2 k )( k k + 1)
    The equation is reduced to :
      k k k ( k k + 1) + k × 1( k k + 1) k × 2 k ( k k + 1) = (14 k k ) ×
1
5
( k k + 2 k )
1
5
( k k + 2 k )
1
5
( k k + 2 k )( k k + 1)
    Remove a bracket on the left of the equation:
      k k k k k + k k k × 1 + k × 1( k k + 1) = (14 k k ) ×
1
5
( k k + 2 k )
1
5
( k k + 2 k )
1
5
( k k + 2 k )( k k + 1)
    Remove a bracket on the right of the equation::
      k k k k k + k k k × 1 + k × 1( k k + 1) = 1 ×
1
5
( k k + 2 k )4 k k ×
1
5
( k k + 2 k )
1
5
( k k + 2 k )
1
5
( k k + 2 k )
    The equation is reduced to :
      k k k k k + k k k × 1 + k × 1( k k + 1) =
1
5
( k k + 2 k )
4
5
k k ( k k + 2 k )
1
5
( k k + 2 k )
1
5
( k k + 2 k )( k k + 1)
    Remove a bracket on the left of the equation:
      k k k k k + k k k × 1 + k × 1 k =
1
5
( k k + 2 k )
4
5
k k ( k k + 2 k )
1
5
( k k + 2 k )
1
5
( k k + 2 k )( k k + 1)
    Remove a bracket on the right of the equation::
      k k k k k + k k k × 1 + k × 1 k =
1
5
k k +
1
5
× 2 k
4
5
k k ( k k + 2 k )
1
5
( k k + 2 k )
    The equation is reduced to :
      k k k k k + k k k × 1 + k × 1 k =
1
5
k k +
2
5
k
4
5
k k ( k k + 2 k )
1
5
( k k + 2 k )
1
5
    Remove a bracket on the left of the equation:
      k k k k k + k k k × 1 + k × 1 k =
1
5
k k +
2
5
k
4
5
k k ( k k + 2 k )
1
5
( k k + 2 k )
1
5
    Remove a bracket on the right of the equation::
      k k k k k + k k k × 1 + k × 1 k =
1
5
k k +
2
5
k
4
5
k k k k
4
5
k
    The equation is reduced to :
      k k k k k + k k k × 1 + k × 1 k =
1
5
k k +
2
5
k
4
5
k k k k
8
5
k
    Remove a bracket on the right of the equation::
      k k k k k + k k k × 1 + k × 1 k =
1
5
k k +
2
5
k
4
5
k k k k
8
5
k
    The equation is reduced to :
      k k k k k + k k k × 1 + k × 1 k =
1
5
k k +
2
5
k
4
5
k k k k
8
5
k
    The equation is reduced to :
      k k k k k + k k k × 1 + k × 1 k =
1
5
k k + 0 k
4
5
k k k k
8
5
k
    Remove a bracket on the right of the equation::
      k k k k k + k k k × 1 + k × 1 k =
1
5
k k
4
5
k k k k
8
5
k k k
    The equation is reduced to :
      k k k k k + k k k × 1 + k × 1 k =
1
5
k k
4
5
k k k k
8
5
k k k
    
    There are 0 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。