| k | ÷ | ( | k | k | + | 2 | k | ) | = | ( | ( | ( | 1 | − | 4 | k | k | ) | − | 1 | ) | ÷ | ( | k | k | + | 1 | ) | − | 1 | ) | ÷ | 5 | ÷ | ( | ( | k | k | + | 1 | ) | − | 2 | k | ) |
| 方程两边同时乘以: | ( | k | k | + | 2 | k | ) | , | ( | ( | k | k | + | 1 | ) | − | 2 | k | ) |
| k | ( | ( | k | k | + | 1 | ) | − | 2 | k | ) | = | ( | ( | ( | 1 | − | 4 | k | k | ) | − | 1 | ) | ÷ | ( | k | k | + | 1 | ) | − | 1 | ) | ÷ | 5 | × | ( | k | k | + | 2 | k | ) |
| k | ( | k | k | + | 1 | ) | − | k | × | 2 | k | = | ( | ( | ( | 1 | − | 4 | k | k | ) | − | 1 | ) | ÷ | ( | k | k | + | 1 | ) | − | 1 | ) | ÷ | 5 | × | ( | k | k | + | 2 | k | ) |
| k | ( | k | k | + | 1 | ) | − | k | × | 2 | k | = | ( | ( | 1 | − | 4 | k | k | ) | − | 1 | ) | ÷ | ( | k | k | + | 1 | ) | ÷ | 5 | × | ( | k | k | + | 2 | k | ) | − | 1 | ÷ | 5 | × | ( | k | k | + | 2 | k | ) |
| k | ( | k | k | + | 1 | ) | − | k | × | 2 | k | = | ( | ( | 1 | − | 4 | k | k | ) | − | 1 | ) | ÷ | ( | k | k | + | 1 | ) | × | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) |
| 方程两边同时乘以: | ( | k | k | + | 1 | ) |
| k | ( | k | k | + | 1 | ) | ( | k | k | + | 1 | ) | − | k | × | 2 | k | ( | k | k | + | 1 | ) | = | ( | ( | 1 | − | 4 | k | k | ) | − | 1 | ) | × | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | ( | k | k | + | 1 | ) |
| k | k | k | ( | k | k | + | 1 | ) | + | k | × | 1 | ( | k | k | + | 1 | ) | − | k | × | 2 | k | ( | k | k | + | 1 | ) | = | ( | ( | 1 | − | 4 | k | k | ) | − | 1 | ) | × | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | ( | k | k | + | 1 | ) |
| k | k | k | ( | k | k | + | 1 | ) | + | k | × | 1 | ( | k | k | + | 1 | ) | − | k | × | 2 | k | ( | k | k | + | 1 | ) | = | ( | 1 | − | 4 | k | k | ) | × | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 | × | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | ( | k | k | + | 1 | ) |
| k | k | k | ( | k | k | + | 1 | ) | + | k | × | 1 | ( | k | k | + | 1 | ) | − | k | × | 2 | k | ( | k | k | + | 1 | ) | = | ( | 1 | − | 4 | k | k | ) | × | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | ( | k | k | + | 1 | ) |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | ( | k | k | + | 1 | ) | = | ( | 1 | − | 4 | k | k | ) | × | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | ( | k | k | + | 1 | ) |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | ( | k | k | + | 1 | ) | = | 1 | × | 1 5 | ( | k | k | + | 2 | k | ) | − | 4 | k | k | × | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | ( | k | k | + | 1 | ) | = | 1 5 | ( | k | k | + | 2 | k | ) | − | 4 5 | k | k | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | ( | k | k | + | 1 | ) |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | k | = | 1 5 | ( | k | k | + | 2 | k | ) | − | 4 5 | k | k | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | ( | k | k | + | 1 | ) |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | k | = | 1 5 | k | k | + | 1 5 | × | 2 | k | − | 4 5 | k | k | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | k | = | 1 5 | k | k | + | 2 5 | k | − | 4 5 | k | k | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | k | = | 1 5 | k | k | + | 2 5 | k | − | 4 5 | k | k | ( | k | k | + | 2 | k | ) | − | 1 5 | ( | k | k | + | 2 | k | ) | − | 1 5 |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | k | = | 1 5 | k | k | + | 2 5 | k | − | 4 5 | k | k | k | k | − | 4 5 | k |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | k | = | 1 5 | k | k | + | 2 5 | k | − | 4 5 | k | k | k | k | − | 8 5 | k |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | k | = | 1 5 | k | k | + | 2 5 | k | − | 4 5 | k | k | k | k | − | 8 5 | k |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | k | = | 1 5 | k | k | + | 2 5 | k | − | 4 5 | k | k | k | k | − | 8 5 | k |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | k | = | 1 5 | k | k | + | 0 | k | − | 4 5 | k | k | k | k | − | 8 5 | k |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | k | = | 1 5 | k | k | − | 4 5 | k | k | k | k | − | 8 5 | k | k | k |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | k | = | 1 5 | k | k | − | 4 5 | k | k | k | k | − | 8 5 | k | k | k |
| k | k | k | k | k | + | k | k | k | × | 1 | + | k | × | 1 | k | = | 1 5 | k | k | − | 4 5 | k | k | k | k | − | 8 5 | k | k | k |