Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation y*((-2)y+8)*(y-31/10)*(-5/3) = 0 .
    Question type: Equation
    Solution:Original question:
      y (( - 2) y + 8)( y 31 ÷ 10)( - 5 ÷ 3) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = y ( - 2) y ( y 31 ÷ 10)( - 5 ÷ 3) + y × 8( y 31 ÷ 10)( - 5 ÷ 3)
                                             = - y × 2 y ( y 31 ÷ 10)( - 5 ÷ 3) + y × 8( y 31 ÷ 10)( - 5 ÷ 3)
                                             = - y × 2 y y ( - 5 ÷ 3) + y × 2 y × 31 ÷ 10 × ( - 5 ÷ 3) + y
                                             = - y × 2 y y ( - 5 ÷ 3) + y ×
31
5
y ( - 5 ÷ 3) + y × 8( y 31 ÷ 10)
                                             = y × 2 y y × 5 ÷ 3 + y ×
31
5
y ( - 5 ÷ 3) + y × 8
                                             = y ×
10
3
y y + y ×
31
5
y ( - 5 ÷ 3) + y × 8( y 31 ÷ 10)( - 5 ÷ 3)
                                             = y ×
10
3
y y y ×
31
5
y × 5 ÷ 3 + y × 8( y 31 ÷ 10)
                                             = y ×
10
3
y y y ×
31
3
y + y × 8( y 31 ÷ 10)( - 5 ÷ 3)
                                             = y ×
10
3
y y y ×
31
3
y + y × 8 y ( - 5 ÷ 3) y
                                             = y ×
10
3
y y y ×
31
3
y + y × 8 y ( - 5 ÷ 3) y
                                             = y ×
10
3
y y y ×
31
3
y y × 8 y × 5 ÷ 3
                                             = y ×
10
3
y y y ×
31
3
y y ×
40
3
y y ×
124
5
                                             = y ×
10
3
y y y ×
31
3
y y ×
40
3
y + y ×
124
5
                                             = y ×
10
3
y y y ×
31
3
y y ×
40
3
y + y ×
124
3
    The equation is transformed into :
      y ×
10
3
y y y ×
31
3
y y ×
40
3
y +
124
3
y = 0

    After the equation is converted into a general formula, it is converted into:
    ( y +0 )( 10y - 31 )( y - 4 )=0
    From
        y + 0 = 0
        10y - 31 = 0
        y - 4 = 0

    it is concluded that::
        y1=0
        y2=
31
10
        y3=4
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。