Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (80+m)(50-0.5m)+100(30+0.2m) = 50*80+30*100+250 .
    Question type: Equation
    Solution:Original question:
     (80 + m )(50
1
2
m ) + 100(30 +
1
5
m ) = 50 × 80 + 30 × 100 + 250
    Remove the bracket on the left of the equation:
     Left side of the equation = 80(50
1
2
m ) + m (50
1
2
m ) + 100(30 +
1
5
m )
                                             = 80 × 5080 ×
1
2
m + m (50
1
2
m ) + 100(30 +
1
5
m )
                                             = 400040 m + m (50
1
2
m ) + 100(30 +
1
5
m )
                                             = 400040 m + m × 50 m ×
1
2
m + 100(30 +
1
5
m )
                                             = 4000 + 10 m m ×
1
2
m + 100(30 +
1
5
m )
                                             = 4000 + 10 m m ×
1
2
m + 100 × 30 + 100 ×
1
5
m
                                             = 4000 + 10 m m ×
1
2
m + 3000 + 20 m
                                             = 7000 + 30 m m ×
1
2
m
    The equation is transformed into :
     7000 + 30 m m ×
1
2
m = 50 × 80 + 30 × 100 + 250
     Right side of the equation = 4000 + 3000 + 250
                                               = 7250
    The equation is transformed into :
     7000 + 30 m m ×
1
2
m = 7250

    After the equation is converted into a general formula, it is converted into:
    ( m - 10 )( m - 50 )=0
    From
        m - 10 = 0
        m - 50 = 0

    it is concluded that::
        m1=10
        m2=50
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。