Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation {[(2k+2)(2k+2)]/k2+1*[(1+k)*(1+k)]*[(4k/3-k2)*(4k/3-k2)]}+28/(3-k2) = 1440 .
    Question type: Equation
    Solution:Original question:
     (((2 k + 2)(2 k + 2)) ÷ k × 2 + 1((1 + k )(1 + k ))((4 k ÷ 3 k × 2)(4 k ÷ 3 k × 2))) + 28 ÷ (3 k × 2) = 1440
     Multiply both sides of the equation by:(3 k × 2)
     (((2 k + 2)(2 k + 2)) ÷ k × 2 + 1((1 + k )(1 + k ))((4 k ÷ 3 k × 2)(4 k ÷ 3 k × 2)))(3 k × 2) + 28 = 1440(3 k × 2)
    Remove a bracket on the left of the equation::
     ((2 k + 2)(2 k + 2)) ÷ k × 2(3 k × 2) + 1((1 + k )(1 + k ))((4 k ÷ 3 k × 2)(4 k ÷ 3 k × 2))(3 k × 2) + 28 = 1440(3 k × 2)
    Remove a bracket on the right of the equation::
     ((2 k + 2)(2 k + 2)) ÷ k × 2(3 k × 2) + 1((1 + k )(1 + k ))((4 k ÷ 3 k × 2)(4 k ÷ 3 k × 2))(3 k × 2) + 28 = 1440 × 31440 k × 2
    The equation is reduced to :
     ((2 k + 2)(2 k + 2)) ÷ k × 2(3 k × 2) + 1((1 + k )(1 + k ))((4 k ÷ 3 k × 2)(4 k ÷ 3 k × 2))(3 k × 2) + 28 = 43202880 k
     Multiply both sides of the equation by: k
     ((2 k + 2)(2 k + 2)) × 2(3 k × 2) + 1((1 + k )(1 + k ))((4 k ÷ 3 k × 2)(4 k ÷ 3 k × 2))(3 k × 2) k + 28 k = 4320 k 2880 k k
    Remove a bracket on the left of the equation:
     (2 k + 2)(2 k + 2) × 2(3 k × 2) + 1((1 + k )(1 + k ))((4 k ÷ 3 k × 2)(4 k ÷ 3 k × 2))(3 k × 2) k + 28 k = 4320 k 2880 k k
    Remove a bracket on the left of the equation:
     2 k (2 k + 2) × 2(3 k × 2) + 2(2 k + 2) × 2(3 k × 2) + 1((1 + k )(1 + k ))((4 k ÷ 3 k × 2)(4 k ÷ 3 k × 2)) = 4320 k 2880 k k
    The equation is reduced to :
     4 k (2 k + 2)(3 k × 2) + 4(2 k + 2)(3 k × 2) + 1((1 + k )(1 + k ))((4 k ÷ 3 k × 2)(4 k ÷ 3 k × 2))(3 k × 2) k = 4320 k 2880 k k
    Remove a bracket on the left of the equation:
     4 k × 2 k (3 k × 2) + 4 k × 2(3 k × 2) + 4(2 k + 2)(3 k × 2) = 4320 k 2880 k k
    The equation is reduced to :
     8 k k (3 k × 2) + 8 k (3 k × 2) + 4(2 k + 2)(3 k × 2) + 1((1 + k )(1 + k )) = 4320 k 2880 k k
    Remove a bracket on the left of the equation:
     8 k k × 38 k k k × 2 + 8 k (3 k × 2) = 4320 k 2880 k k
    The equation is reduced to :
     24 k k 16 k k k + 8 k (3 k × 2) + 4(2 k + 2) = 4320 k 2880 k k
    Remove a bracket on the left of the equation:
     24 k k 16 k k k + 8 k × 38 k = 4320 k 2880 k k
    The equation is reduced to :
     24 k k 16 k k k + 24 k 16 k k = 4320 k 2880 k k
    The equation is reduced to :
     24 k k 16 k k k + 52 k 16 k k = 4320 k 2880 k k
    Remove a bracket on the left of the equation:
     24 k k 16 k k k + 52 k 16 k k = 4320 k 2880 k k
    The equation is reduced to :
     24 k k 16 k k k + 52 k 16 k k = 4320 k 2880 k k
    Remove a bracket on the left of the equation:
     24 k k 16 k k k + 52 k 16 k k = 4320 k 2880 k k
    The equation is reduced to :
     24 k k 16 k k k + 52 k 16 k k = 4320 k 2880 k k
    The equation is reduced to :
     24 k k 16 k k k + 76 k 16 k k = 4320 k 2880 k k
    Remove a bracket on the left of the equation:
     24 k k 16 k k k + 76 k 16 k k = 4320 k 2880 k k
    The equation is reduced to :
     24 k k 16 k k k + 76 k 16 k k = 4320 k 2880 k k
    The equation is reduced to :
     24 k k 16 k k k + 60 k 16 k k = 4320 k 2880 k k

    The solution of the equation:
        k1≈-8.123780 , keep 6 decimal places
        k2≈6.967505 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。