Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation {[(2k+2)(2k+2)]/(k2+1)*[(1+k)*(1+k)]*[(4k/(3-k2))*(4k/(3-k2))]}+28/(3-k2) = 1440 .
    Question type: Equation
    Solution:Original question:
     (((2 k + 2)(2 k + 2)) ÷ ( k × 2 + 1) × ((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))) + 28 ÷ (3 k × 2) = 1440
     Multiply both sides of the equation by:(3 k × 2)
     (((2 k + 2)(2 k + 2)) ÷ ( k × 2 + 1) × ((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2))))(3 k × 2) + 28 = 1440(3 k × 2)
    Remove a bracket on the left of the equation::
     ((2 k + 2)(2 k + 2)) ÷ ( k × 2 + 1) × ((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 28 = 1440(3 k × 2)
    Remove a bracket on the right of the equation::
     ((2 k + 2)(2 k + 2)) ÷ ( k × 2 + 1) × ((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 28 = 1440 × 31440 k × 2
    The equation is reduced to :
     ((2 k + 2)(2 k + 2)) ÷ ( k × 2 + 1) × ((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 28 = 43202880 k
     Multiply both sides of the equation by:( k × 2 + 1)
     ((2 k + 2)(2 k + 2))((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 28( k × 2 + 1) = 4320( k × 2 + 1)2880 k ( k × 2 + 1)
    Remove a bracket on the left of the equation:
     (2 k + 2)(2 k + 2)((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 28( k × 2 + 1) = 4320( k × 2 + 1)2880 k ( k × 2 + 1)
    Remove a bracket on the right of the equation::
     (2 k + 2)(2 k + 2)((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 28( k × 2 + 1) = 4320 k × 2 + 4320 × 12880 k ( k × 2 + 1)
    The equation is reduced to :
     (2 k + 2)(2 k + 2)((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 28( k × 2 + 1) = 8640 k + 43202880 k ( k × 2 + 1)
    Remove a bracket on the left of the equation:
     2 k (2 k + 2)((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 2(2 k + 2)((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 28 = 8640 k + 43202880 k ( k × 2 + 1)
    Remove a bracket on the right of the equation::
     2 k (2 k + 2)((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 2(2 k + 2)((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 28 = 8640 k + 43202880 k k × 22880 k × 1
    The equation is reduced to :
     2 k (2 k + 2)((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 2(2 k + 2)((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 28 = 8640 k + 43205760 k k 2880 k
    The equation is reduced to :
     2 k (2 k + 2)((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 2(2 k + 2)((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 28 = 5760 k + 43205760 k k
    Remove a bracket on the left of the equation:
     2 k × 2 k ((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 2 k × 2((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2))) = 5760 k + 43205760 k k
    The equation is reduced to :
     4 k k ((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 4 k ((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 2 = 5760 k + 43205760 k k
    Remove a bracket on the left of the equation:
     4 k k (1 + k )(1 + k )((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 4 k ((1 + k )(1 + k ))((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) = 5760 k + 43205760 k k
    Remove a bracket on the left of the equation:
     4 k k × 1(1 + k )((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 4 k k k (1 + k ) = 5760 k + 43205760 k k
    The equation is reduced to :
     4 k k (1 + k )((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 4 k k k (1 + k )((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2))) = 5760 k + 43205760 k k
    Remove a bracket on the left of the equation:
     4 k k × 1((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 4 k k k ((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) = 5760 k + 43205760 k k
    The equation is reduced to :
     4 k k ((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 4 k k k ((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) + 4 = 5760 k + 43205760 k k
    Remove a bracket on the left of the equation:
     4 k k (4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2))(3 k × 2) + 4 k k k ((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2)))(3 k × 2) = 5760 k + 43205760 k k
    Remove a bracket on the left of the equation:
     4 k k × 4 k ÷ (3 k × 2) × (4 k ÷ (3 k × 2))(3 k × 2) + 4 k k k = 5760 k + 43205760 k k
    The equation is reduced to :
     16 k k k ÷ (3 k × 2) × (4 k ÷ (3 k × 2))(3 k × 2) + 4 k k k ((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2))) = 5760 k + 43205760 k k
     Multiply both sides of the equation by:(3 k × 2)

    the solutions is:
        k≈1.174988 , keep 6 decimal places
    
    There are 1 solution(s).


解方程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。