Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation {[4k/(3-k2)]*[4k/(3-k2)]*(1+k2)*[-4k2/(3-k2)]*[-4k2/(3-k2)]+[(16k2+12)/(3-k2)]} = 1440 .
    Question type: Equation
    Solution:Original question:
     ((4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2))(1 + k × 2)( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2))) = 1440
    Remove a bracket on the left of the equation::
     (4 k ÷ (3 k × 2))(4 k ÷ (3 k × 2))(1 + k × 2)( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2)) = 1440
    Remove a bracket on the left of the equation:
     4 k ÷ (3 k × 2) × (4 k ÷ (3 k × 2))(1 + k × 2)( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2)) = 1440
     Multiply both sides of the equation by:(3 k × 2)
     4 k (4 k ÷ (3 k × 2))(1 + k × 2)( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2) = 1440(3 k × 2)
    Remove a bracket on the left of the equation:
     4 k × 4 k ÷ (3 k × 2) × (1 + k × 2)( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2) = 1440(3 k × 2)
    Remove a bracket on the right of the equation::
     4 k × 4 k ÷ (3 k × 2) × (1 + k × 2)( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2) = 1440 × 31440 k × 2
    The equation is reduced to :
     16 k k ÷ (3 k × 2) × (1 + k × 2)( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2) = 43202880 k
     Multiply both sides of the equation by:(3 k × 2)
     16 k k (1 + k × 2)( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2)(3 k × 2) = 4320(3 k × 2)2880 k (3 k × 2)
    Remove a bracket on the left of the equation:
     16 k k × 1( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) + 16 k k k × 2( - 4 k × 2 ÷ (3 k × 2)) = 4320(3 k × 2)2880 k (3 k × 2)
    Remove a bracket on the right of the equation::
     16 k k × 1( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) + 16 k k k × 2( - 4 k × 2 ÷ (3 k × 2)) = 4320 × 34320 k × 22880 k (3 k × 2)
    The equation is reduced to :
     16 k k ( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) + 32 k k k ( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2)) = 129608640 k 2880 k (3 k × 2)
    Remove a bracket on the left of the equation:
      - 16 k k × 4 k × 2 ÷ (3 k × 2) × ( - 4 k × 2 ÷ (3 k × 2)) + 32 k k k = 129608640 k 2880 k (3 k × 2)
    Remove a bracket on the right of the equation::
      - 16 k k × 4 k × 2 ÷ (3 k × 2) × ( - 4 k × 2 ÷ (3 k × 2)) + 32 k k k = 129608640 k 2880 k × 3 + 2880 k k × 2
    The equation is reduced to :
      - 128 k k k ÷ (3 k × 2) × ( - 4 k × 2 ÷ (3 k × 2)) + 32 k k k ( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) = 129608640 k 8640 k + 5760 k k
    The equation is reduced to :
      - 128 k k k ÷ (3 k × 2) × ( - 4 k × 2 ÷ (3 k × 2)) + 32 k k k ( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) = 1296017280 k + 5760 k k
     Multiply both sides of the equation by:(3 k × 2)
      - 128 k k k ( - 4 k × 2 ÷ (3 k × 2)) + 32 k k k ( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2))(3 k × 2) = 12960(3 k × 2)17280 k (3 k × 2) + 5760 k k (3 k × 2)
    Remove a bracket on the left of the equation:
     128 k k k × 4 k × 2 ÷ (3 k × 2) + 32 k k k = 12960(3 k × 2)17280 k (3 k × 2) + 5760 k k (3 k × 2)
    Remove a bracket on the right of the equation::
     128 k k k × 4 k × 2 ÷ (3 k × 2) + 32 k k k = 12960 × 312960 k × 217280 k (3 k × 2) + 5760 k k (3 k × 2)
    The equation is reduced to :
     1024 k k k k ÷ (3 k × 2) + 32 k k k ( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2)) = 3888025920 k 17280 k (3 k × 2) + 5760 k k (3 k × 2)
     Multiply both sides of the equation by:(3 k × 2)
     1024 k k k k + 32 k k k ( - 4 k × 2 ÷ (3 k × 2))( - 4 k × 2 ÷ (3 k × 2))(3 k × 2) = 38880(3 k × 2)25920 k (3 k × 2)17280 k (3 k × 2)(3 k × 2) + 5760 k k
    Remove a bracket on the left of the equation:
     1024 k k k k 32 k k k × 4 k × 2 = 38880(3 k × 2)25920 k (3 k × 2)17280 k (3 k × 2)(3 k × 2) + 5760 k k
    Remove a bracket on the right of the equation::
     1024 k k k k 32 k k k × 4 k × 2 = 38880 × 338880 k × 225920 k (3 k × 2)17280 k (3 k × 2)(3 k × 2)

    the solutions is:
        k≈0.936502 , keep 6 decimal places
    
    There are 1 solution(s).


解方程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。