Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation [4k/(3-k2)]2*(1+k2)*[-4k2/(3-k2)]2+[(16k2+12)/(3-k2)] = 1440 .
    Question type: Equation
    Solution:Original question:
     (4 k ÷ (3 k × 2)) × 2(1 + k × 2)( - 4 k × 2 ÷ (3 k × 2)) × 2 + ((16 k × 2 + 12) ÷ (3 k × 2)) = 1440
    Remove a bracket on the left of the equation::
     4 k ÷ (3 k × 2) × 2(1 + k × 2)( - 4 k × 2 ÷ (3 k × 2)) × 2 + ((16 k × 2 + 12) ÷ (3 k × 2)) = 1440
    The equation is reduced to :
     16 k ÷ (3 k × 2) × (1 + k × 2)( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2)) = 1440
     Multiply both sides of the equation by:(3 k × 2)
     16 k (1 + k × 2)( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2) = 1440(3 k × 2)
    Remove a bracket on the left of the equation:
     16 k × 1( - 4 k × 2 ÷ (3 k × 2)) + 16 k k × 2( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2) = 1440(3 k × 2)
    Remove a bracket on the right of the equation::
     16 k × 1( - 4 k × 2 ÷ (3 k × 2)) + 16 k k × 2( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2) = 1440 × 31440 k × 2
    The equation is reduced to :
     16 k ( - 4 k × 2 ÷ (3 k × 2)) + 32 k k ( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2) = 43202880 k
    Remove a bracket on the left of the equation:
      - 16 k × 4 k × 2 ÷ (3 k × 2) + 32 k k ( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2) = 43202880 k
    The equation is reduced to :
      - 128 k k ÷ (3 k × 2) + 32 k k ( - 4 k × 2 ÷ (3 k × 2)) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2) = 43202880 k
     Multiply both sides of the equation by:(3 k × 2)
      - 128 k k + 32 k k ( - 4 k × 2 ÷ (3 k × 2))(3 k × 2) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2)(3 k × 2) = 4320(3 k × 2)2880 k (3 k × 2)
    Remove a bracket on the left of the equation:
      - 128 k k 32 k k × 4 k × 2 ÷ (3 k × 2) × (3 k × 2) + ((16 k × 2 + 12) ÷ (3 k × 2)) = 4320(3 k × 2)2880 k (3 k × 2)
    Remove a bracket on the right of the equation::
      - 128 k k 32 k k × 4 k × 2 ÷ (3 k × 2) × (3 k × 2) + ((16 k × 2 + 12) ÷ (3 k × 2)) = 4320 × 34320 k × 22880 k (3 k × 2)
    The equation is reduced to :
      - 128 k k 256 k k k ÷ (3 k × 2) × (3 k × 2) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2)(3 k × 2) = 129608640 k 2880 k (3 k × 2)
     Multiply both sides of the equation by:(3 k × 2)
      - 128 k k (3 k × 2)256 k k k (3 k × 2) + ((16 k × 2 + 12) ÷ (3 k × 2))(3 k × 2)(3 k × 2) = 12960(3 k × 2)8640 k (3 k × 2)2880 k (3 k × 2)(3 k × 2)
    Remove a bracket on the left of the equation:
      - 128 k k × 3 + 128 k k k × 2256 k k = 12960(3 k × 2)8640 k (3 k × 2)2880 k (3 k × 2)(3 k × 2)
    Remove a bracket on the right of the equation::
      - 128 k k × 3 + 128 k k k × 2256 k k = 12960 × 312960 k × 28640 k (3 k × 2)2880 k (3 k × 2)(3 k × 2)
    The equation is reduced to :
      - 384 k k + 256 k k k 256 k k k (3 k × 2) = 3888025920 k 8640 k (3 k × 2)2880 k (3 k × 2)(3 k × 2)
    Remove a bracket on the left of the equation:
      - 384 k k + 256 k k k 256 k k k × 3 = 3888025920 k 8640 k (3 k × 2)2880 k (3 k × 2)(3 k × 2)
    Remove a bracket on the right of the equation::
      - 384 k k + 256 k k k 256 k k k × 3 = 3888025920 k 8640 k × 3 + 8640 k k × 22880 k
    The equation is reduced to :
      - 384 k k + 256 k k k 768 k k k + 512 = 3888025920 k 25920 k + 17280 k k 2880 k (3 k × 2)(3 k × 2)
    The equation is reduced to :
      - 384 k k + 256 k k k 768 k k k + 512 = 3888051840 k + 17280 k k 2880 k (3 k × 2)(3 k × 2)
    Remove a bracket on the left of the equation:
      - 384 k k + 256 k k k 768 k k k + 512 = 3888051840 k + 17280 k k 2880 k (3 k × 2)(3 k × 2)
    Remove a bracket on the right of the equation::
      - 384 k k + 256 k k k 768 k k k + 512 = 3888051840 k + 17280 k k 2880 k × 3(3 k × 2) + 2880 k

    the solutions is:
        k≈-25.938218 , keep 6 decimal places
    
    There are 1 solution(s).


解方程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。