总述:本次共解1题。其中
☆方程1题
〖 1/1方程〗
作业:求方程 [4k/(3-k2)]2*(1+k2)*[-4k2/(3-k2)]2+[(16k2+12)/(3-k2)] = 1440 的解.
题型:方程
解:原方程:| | ( | 4 | k | ÷ | ( | 3 | − | k | × | 2 | ) | ) | × | 2 | ( | 1 | + | k | × | 2 | ) | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | × | 2 | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | = | 1440 |
去掉方程左边的一个括号:
| | 4 | k | ÷ | ( | 3 | − | k | × | 2 | ) | × | 2 | ( | 1 | + | k | × | 2 | ) | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | × | 2 | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | = | 1440 |
方程化简为:
| | 16 | k | ÷ | ( | 3 | − | k | × | 2 | ) | × | ( | 1 | + | k | × | 2 | ) | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | = | 1440 |
| | 16 | k | ( | 1 | + | k | × | 2 | ) | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | = | 1440 | ( | 3 | − | k | × | 2 | ) |
去掉方程左边的一个括号:
| | 16 | k | × | 1 | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | + | 16 | k | k | × | 2 | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | = | 1440 | ( | 3 | − | k | × | 2 | ) |
去掉方程右边的一个括号:
| | 16 | k | × | 1 | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | + | 16 | k | k | × | 2 | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | = | 1440 | × | 3 | − | 1440 | k | × | 2 |
方程化简为:
| | 16 | k | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | + | 32 | k | k | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | = | 4320 | − | 2880 | k |
去掉方程左边的一个括号:
| | - | 16 | k | × | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | + | 32 | k | k | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | = | 4320 | − | 2880 | k |
方程化简为:
| | - | 128 | k | k | ÷ | ( | 3 | − | k | × | 2 | ) | + | 32 | k | k | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | = | 4320 | − | 2880 | k |
| | - | 128 | k | k | + | 32 | k | k | ( | - | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) | = | 4320 | ( | 3 | − | k | × | 2 | ) | − | 2880 | k | ( | 3 | − | k | × | 2 | ) |
去掉方程左边的一个括号:
| | - | 128 | k | k | − | 32 | k | k | × | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | × | ( | 3 | − | k | × | 2 | ) | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | = | 4320 | ( | 3 | − | k | × | 2 | ) | − | 2880 | k | ( | 3 | − | k | × | 2 | ) |
去掉方程右边的一个括号:
| | - | 128 | k | k | − | 32 | k | k | × | 4 | k | × | 2 | ÷ | ( | 3 | − | k | × | 2 | ) | × | ( | 3 | − | k | × | 2 | ) | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | = | 4320 | × | 3 | − | 4320 | k | × | 2 | − | 2880 | k | ( | 3 | − | k | × | 2 | ) |
方程化简为:
| | - | 128 | k | k | − | 256 | k | k | k | ÷ | ( | 3 | − | k | × | 2 | ) | × | ( | 3 | − | k | × | 2 | ) | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) | = | 12960 | − | 8640 | k | − | 2880 | k | ( | 3 | − | k | × | 2 | ) |
| | - | 128 | k | k | ( | 3 | − | k | × | 2 | ) | − | 256 | k | k | k | ( | 3 | − | k | × | 2 | ) | + | ( | ( | 16 | k | × | 2 | + | 12 | ) | ÷ | ( | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) | = | 12960 | ( | 3 | − | k | × | 2 | ) | − | 8640 | k | ( | 3 | − | k | × | 2 | ) | − | 2880 | k | ( | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) |
去掉方程左边的一个括号:
| | - | 128 | k | k | × | 3 | + | 128 | k | k | k | × | 2 | − | 256 | k | k | = | 12960 | ( | 3 | − | k | × | 2 | ) | − | 8640 | k | ( | 3 | − | k | × | 2 | ) | − | 2880 | k | ( | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) |
去掉方程右边的一个括号:
| | - | 128 | k | k | × | 3 | + | 128 | k | k | k | × | 2 | − | 256 | k | k | = | 12960 | × | 3 | − | 12960 | k | × | 2 | − | 8640 | k | ( | 3 | − | k | × | 2 | ) | − | 2880 | k | ( | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) |
方程化简为:
| | - | 384 | k | k | + | 256 | k | k | k | − | 256 | k | k | k | ( | 3 | − | k | × | 2 | ) | = | 38880 | − | 25920 | k | − | 8640 | k | ( | 3 | − | k | × | 2 | ) | − | 2880 | k | ( | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) |
去掉方程左边的一个括号:
| | - | 384 | k | k | + | 256 | k | k | k | − | 256 | k | k | k | × | 3 | = | 38880 | − | 25920 | k | − | 8640 | k | ( | 3 | − | k | × | 2 | ) | − | 2880 | k | ( | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) |
去掉方程右边的一个括号:
| | - | 384 | k | k | + | 256 | k | k | k | − | 256 | k | k | k | × | 3 | = | 38880 | − | 25920 | k | − | 8640 | k | × | 3 | + | 8640 | k | k | × | 2 | − | 2880 | k |
方程化简为:
| | - | 384 | k | k | + | 256 | k | k | k | − | 768 | k | k | k | + | 512 | = | 38880 | − | 25920 | k | − | 25920 | k | + | 17280 | k | k | − | 2880 | k | ( | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) |
方程化简为:
| | - | 384 | k | k | + | 256 | k | k | k | − | 768 | k | k | k | + | 512 | = | 38880 | − | 51840 | k | + | 17280 | k | k | − | 2880 | k | ( | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) |
去掉方程左边的一个括号:
| | - | 384 | k | k | + | 256 | k | k | k | − | 768 | k | k | k | + | 512 | = | 38880 | − | 51840 | k | + | 17280 | k | k | − | 2880 | k | ( | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) |
去掉方程右边的一个括号:
| | - | 384 | k | k | + | 256 | k | k | k | − | 768 | k | k | k | + | 512 | = | 38880 | − | 51840 | k | + | 17280 | k | k | − | 2880 | k | × | 3 | ( | 3 | − | k | × | 2 | ) | + | 2880 | k |
方程的解为:
k≈-25.938218 ,保留6位小数
有 1个解。
解方程的详细方法请参阅:《方程的解法》
你的问题在这里没有得到解决?请到 热门难题 里面看看吧!