Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 4(1+m)(1+1.5m)+0.3(1+m) = 6.6 .
    Question type: Equation
    Solution:Original question:
     4(1 + m )(1 +
3
2
m ) +
3
10
(1 + m ) =
33
5
    Remove the bracket on the left of the equation:
     Left side of the equation = 4 × 1(1 +
3
2
m ) + 4 m (1 +
3
2
m ) +
3
10
(1 + m )
                                             = 4(1 +
3
2
m ) + 4 m (1 +
3
2
m ) +
3
10
(1 + m )
                                             = 4 × 1 + 4 ×
3
2
m + 4 m (1 +
3
2
m ) +
3
10
(1 + m )
                                             = 4 + 6 m + 4 m (1 +
3
2
m ) +
3
10
(1 + m )
                                             = 4 + 6 m + 4 m × 1 + 4 m ×
3
2
m +
3
10
(1 + m )
                                             = 4 + 6 m + 4 m + 6 m m +
3
10
(1 + m )
                                             = 4 + 10 m + 6 m m +
3
10
(1 + m )
                                             = 4 + 10 m + 6 m m +
3
10
× 1 +
3
10
m
                                             = 4 + 10 m + 6 m m +
3
10
+
3
10
m
                                             =
43
10
+
103
10
m + 6 m m
    The equation is transformed into :
     
43
10
+
103
10
m + 6 m m =
33
5

    After the equation is converted into a general formula, it is converted into:
    ( 12m + 23 )( 5m - 1 )=0
    From
        12m + 23 = 0
        5m - 1 = 0

    it is concluded that::
        m1=-
23
12
        m2=
1
5
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。