Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1/n+1/(n+1)+1/(n+2) = 107/210 .
    Question type: Equation
    Solution:Original question:
     1 ÷ n + 1 ÷ ( n + 1) + 1 ÷ ( n + 2) = 107 ÷ 210
     Multiply both sides of the equation by: n
     1 + 1 ÷ ( n + 1) × n + 1 ÷ ( n + 2) × n = 107 ÷ 210 × n
     Multiply both sides of the equation by:( n + 1)
     1( n + 1) + 1 n + 1 ÷ ( n + 2) × n ( n + 1) = 107 ÷ 210 × n ( n + 1)
    Remove a bracket on the left of the equation:
     1 n + 1 × 1 + 1 n + 1 ÷ ( n + 2) × n ( n + 1) = 107 ÷ 210 × n ( n + 1)
    Remove a bracket on the right of the equation::
     1 n + 1 × 1 + 1 n + 1 ÷ ( n + 2) × n ( n + 1) = 107 ÷ 210 × n n + 107 ÷ 210 × n × 1
    The equation is reduced to :
     1 n + 1 + 1 n + 1 ÷ ( n + 2) × n ( n + 1) =
107
210
n n +
107
210
n
    The equation is reduced to :
     2 n + 1 + 1 ÷ ( n + 2) × n ( n + 1) =
107
210
n n +
107
210
n
     Multiply both sides of the equation by:( n + 2)
     2 n ( n + 2) + 1( n + 2) + 1 n ( n + 1) =
107
210
n n ( n + 2) +
107
210
n ( n + 2)
    Remove a bracket on the left of the equation:
     2 n n + 2 n × 2 + 1( n + 2) + 1 n ( n + 1) =
107
210
n n ( n + 2) +
107
210
n ( n + 2)
    Remove a bracket on the right of the equation::
     2 n n + 2 n × 2 + 1( n + 2) + 1 n ( n + 1) =
107
210
n n n +
107
210
n n × 2 +
107
210
n ( n + 2)
    The equation is reduced to :
     2 n n + 4 n + 1( n + 2) + 1 n ( n + 1) =
107
210
n n n +
107
105
n n +
107
210
n ( n + 2)
    Remove a bracket on the left of the equation:
     2 n n + 4 n + 1 n + 1 × 2 + 1 n ( n + 1) =
107
210
n n n +
107
105
n n +
107
210
n ( n + 2)
    Remove a bracket on the right of the equation::
     2 n n + 4 n + 1 n + 1 × 2 + 1 n ( n + 1) =
107
210
n n n +
107
105
n n +
107
210
n n +
107
210
n
    The equation is reduced to :
     2 n n + 4 n + 1 n + 2 + 1 n ( n + 1) =
107
210
n n n +
107
105
n n +
107
210
n n +
107
105
n
    The equation is reduced to :
     2 n n + 5 n + 2 + 1 n ( n + 1) =
107
210
n n n +
107
105
n n +
107
210
n n +
107
105
n
    Remove a bracket on the left of the equation:
     2 n n + 5 n + 2 + 1 n n + 1 n × 1 =
107
210
n n n +
107
105
n n +
107
210
n n +
107
105
n
    The equation is reduced to :
     2 n n + 5 n + 2 + 1 n n + 1 n =
107
210
n n n +
107
105
n n +
107
210
n n +
107
105
n
    The equation is reduced to :
     2 n n + 6 n + 2 + 1 n n =
107
210
n n n +
107
105
n n +
107
210
n n +
107
105
n

    After the equation is converted into a general formula, there is a common factor:
    ( n - 5 )
    From
        n - 5 = 0

    it is concluded that::
        n1=5

    Solutions that cannot be obtained by factorization:
        n2≈-1.630746 , keep 6 decimal places
        n3≈-0.481403 , keep 6 decimal places
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。