Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 120×200×(1+2×a%)×0.9+80×150×(1+a%)-120×200-80×150 = 14160 .
    Question type: Equation
    Solution:Original question:
     120 × 200(1 + 2 a ) ×
9
10
+ 80 × 150(1 + a )120 × 20080 × 150 = 14160
     Left side of the equation = 21600(1 + 2 a ) + 12000(1 + a )2400012000
                                             = 21600(1 + 2 a ) + 12000(1 + a )36000
    The equation is transformed into :
     21600(1 + 2 a ) + 12000(1 + a )36000 = 14160
    Remove the bracket on the left of the equation:
     Left side of the equation = 21600 × 1 + 21600 × 2 a + 12000(1 + a )36000
                                             = 21600 + 43200 a + 12000(1 + a )36000
                                             = - 14400 + 43200 a + 12000(1 + a )
                                             = - 14400 + 43200 a + 12000 × 1 + 12000 a
                                             = - 14400 + 43200 a + 12000 + 12000 a
                                             = - 2400 + 55200 a
    The equation is transformed into :
      - 2400 + 55200 a = 14160

    Transposition :
     55200 a = 14160 + 2400

    Combine the items on the right of the equation:
     55200 a = 16560

    The coefficient of the unknown number is reduced to 1 :
      a = 16560 ÷ 55200
        = 16560 ×
1
55200
        = 3 ×
1
10

    We obtained :
      a =
3
10
    This is the solution of the equation.

    Convert the result to decimal form :
      a = 0.3



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。