Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation [(16-9x)/5]/[(12-3x)/5] = [(12-3x)/5]/[5-[(16-9x)/5]] .
    Question type: Equation
    Solution:Original question:
     ((169 x ) ÷ 5) ÷ ((123 x ) ÷ 5) = ((123 x ) ÷ 5) ÷ (5((169 x ) ÷ 5))
     Multiply both sides of the equation by:((123 x ) ÷ 5) ,  (5((169 x ) ÷ 5))
     ((169 x ) ÷ 5)(5((169 x ) ÷ 5)) = ((123 x ) ÷ 5)((123 x ) ÷ 5)
    Remove a bracket on the left of the equation::
     (169 x ) ÷ 5 × (5((169 x ) ÷ 5)) = ((123 x ) ÷ 5)((123 x ) ÷ 5)
    Remove a bracket on the right of the equation::
     (169 x ) ÷ 5 × (5((169 x ) ÷ 5)) = (123 x ) ÷ 5 × ((123 x ) ÷ 5)
    Remove a bracket on the left of the equation:
     16 ×
1
5
(5((169 x ) ÷ 5))9 x ×
1
5
(5((169 x ) ÷ 5)) = (123 x ) ×
1
5
((123 x ) ÷ 5)
    Remove a bracket on the right of the equation::
     16 ×
1
5
(5((169 x ) ÷ 5))9 x ×
1
5
(5((169 x ) ÷ 5)) = 12 ×
1
5
((123 x ) ÷ 5)3 x ×
1
5
((123 x ) ÷ 5)
    The equation is reduced to :
     
16
5
(5((169 x ) ÷ 5))
9
5
x (5((169 x ) ÷ 5)) =
12
5
((123 x ) ÷ 5)
3
5
x ((123 x ) ÷ 5)
    Remove a bracket on the left of the equation:
     
16
5
× 5
16
5
((169 x ) ÷ 5)
9
5
x (5((169 x ) ÷ 5)) =
12
5
((123 x ) ÷ 5)
3
5
x ((123 x ) ÷ 5)
    Remove a bracket on the right of the equation::
     
16
5
× 5
16
5
((169 x ) ÷ 5)
9
5
x (5((169 x ) ÷ 5)) =
12
5
(123 x ) ÷ 5
3
5
x ((123 x ) ÷ 5)
    The equation is reduced to :
     16
16
5
((169 x ) ÷ 5)
9
5
x (5((169 x ) ÷ 5)) =
12
25
(123 x )
3
5
x ((123 x ) ÷ 5)
    Remove a bracket on the left of the equation:
     16
16
5
(169 x ) ÷ 5
9
5
x (5((169 x ) ÷ 5)) =
12
25
(123 x )
3
5
x ((123 x ) ÷ 5)
    Remove a bracket on the right of the equation::
     16
16
5
(169 x ) ÷ 5
9
5
x (5((169 x ) ÷ 5)) =
12
25
× 12
12
25
× 3 x
3
5
x ((123 x ) ÷ 5)
    The equation is reduced to :
     16
16
25
(169 x )
9
5
x (5((169 x ) ÷ 5)) =
144
25
36
25
x
3
5
x ((123 x ) ÷ 5)
    Remove a bracket on the left of the equation:
     16
16
25
× 16 +
16
25
× 9 x
9
5
x (5((169 x ) ÷ 5)) =
144
25
36
25
x
3
5
x ((123 x ) ÷ 5)
    Remove a bracket on the right of the equation::
     16
16
25
× 16 +
16
25
× 9 x
9
5
x (5((169 x ) ÷ 5)) =
144
25
36
25
x
3
5
x (123 x ) ÷ 5
    The equation is reduced to :
     16
256
25
+
144
25
x
9
5
x (5((169 x ) ÷ 5)) =
144
25
36
25
x
3
25
x (123 x )
    The equation is reduced to :
     
144
25
+
144
25
x
9
5
x (5((169 x ) ÷ 5)) =
144
25
36
25
x
3
25
x (123 x )
    Remove a bracket on the left of the equation:
     
144
25
+
144
25
x
9
5
x × 5 +
9
5
x ((169 x ) ÷ 5) =
144
25
36
25
x
3
25
x (123 x )
    Remove a bracket on the right of the equation::
     
144
25
+
144
25
x
9
5
x × 5 +
9
5
x ((169 x ) ÷ 5) =
144
25
36
25
x
3
25
x × 12 +
3
25
x × 3 x
    The equation is reduced to :
     
144
25
+
144
25
x 9 x +
9
5
x ((169 x ) ÷ 5) =
144
25
36
25
x
36
25
x +
9
25
x x
    The equation is reduced to :
     
144
25
81
25
x +
9
5
x ((169 x ) ÷ 5) =
144
25
72
25
x +
9
25
x x
    Remove a bracket on the left of the equation:
     
144
25
81
25
x +
9
5
x (169 x ) ÷ 5 =
144
25
72
25
x +
9
25
x x
    The equation is reduced to :
     
144
25
81
25
x +
9
25
x (169 x ) =
144
25
72
25
x +
9
25
x x
    Remove a bracket on the left of the equation:
     
144
25
81
25
x +
9
25
x × 16
9
25
x × 9 x =
144
25
72
25
x +
9
25
x x

    After the equation is converted into a general formula, it is converted into:
    ( x +0 )( 2x - 3 )=0
    From
        x + 0 = 0
        2x - 3 = 0

    it is concluded that::
        x1=0
        x2=
3
2
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。