| ( | 145 2 | + | 167 | ) | ÷ | 31 | × | x | + | 118 | ÷ | 30 | × | ( | x | + | 15 | ) | + | 59 | ÷ | 30 | × | ( | x | + | 30 | ) | = | 883 |
| Left side of the equation = | ( | 145 2 | + | 167 | ) | × | 1 31 | x | + | 59 15 | ( | x | + | 15 | ) | + | 59 30 | ( | x | + | 30 | ) |
| ( | 145 2 | + | 167 | ) | × | 1 31 | x | + | 59 15 | ( | x | + | 15 | ) | + | 59 30 | ( | x | + | 30 | ) | = | 883 |
| Left side of the equation = | 145 2 | × | 1 31 | x | + | 167 | × | 1 31 | x | + | 59 15 | ( | x | + | 15 | ) | + | 59 30 | ( | x | + | 30 | ) |
| = | 145 62 | x | + | 167 31 | x | + | 59 15 | ( | x | + | 15 | ) | + | 59 30 | ( | x | + | 30 | ) |
| = | 479 62 | x | + | 59 15 | ( | x | + | 15 | ) | + | 59 30 | ( | x | + | 30 | ) |
| = | 479 62 | x | + | 59 15 | x | + | 59 15 | × | 15 | + | 59 30 | ( | x | + | 30 | ) |
| = | 479 62 | x | + | 59 15 | x | + | 59 | + | 59 30 | ( | x | + | 30 | ) |
| = | 10843 930 | x | + | 59 | + | 59 30 | ( | x | + | 30 | ) |
| = | 10843 930 | x | + | 59 | + | 59 30 | x | + | 59 30 | × | 30 |
| = | 10843 930 | x | + | 59 | + | 59 30 | x | + | 59 |
| = | 2112 155 | x | + | 118 |
2112 155 | x | + | 118 | = | 883 |
2112 155 | x | = | 883 | − | 118 |
2112 155 | x | = | 765 |
| x | = | 765 | ÷ | 2112 155 |
| = | 765 | × | 155 2112 |
| = | 255 | × | 155 704 |
| x | = | 39525 704 |
| x | = | 56.143466 |