Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (1+0.55x)(1+0.45x)(1+0.5x)(1+0.55x)(1+0.55x) = x+1 .
    Question type: Equation
    Solution:Original question:
     (1 +
11
20
x )(1 +
9
20
x )(1 +
1
2
x )(1 +
11
20
x )(1 +
11
20
x ) = x + 1
    Remove the bracket on the left of the equation:
     Left side of the equation = 1(1 +
9
20
x )(1 +
1
2
x )(1 +
11
20
x )(1 +
11
20
x ) +
11
20
x (1 +
9
20
x )(1 +
1
2
x )(1 +
11
20
x )(1 +
11
20
x )
                                             = 1 × 1(1 +
1
2
x )(1 +
11
20
x )(1 +
11
20
x ) + 1 ×
9
20
x (1 +
1
2
x )(1 +
11
20
x )(1 +
11
20
x ) +
11
20
                                             = 1(1 +
1
2
x )(1 +
11
20
x )(1 +
11
20
x ) +
9
20
x (1 +
1
2
x )(1 +
11
20
x )(1 +
11
20
x ) +
11
20
x (1 +
9
20
x )
                                             = 1 × 1(1 +
11
20
x )(1 +
11
20
x ) + 1 ×
1
2
x (1 +
11
20
x )(1 +
11
20
x ) +
9
20
x (1 +
1
2
x )
                                             = 1(1 +
11
20
x )(1 +
11
20
x ) +
1
2
x (1 +
11
20
x )(1 +
11
20
x ) +
9
20
x (1 +
1
2
x )(1 +
11
20
x )(1 +
11
20
x )
                                             = 1 × 1(1 +
11
20
x ) + 1 ×
11
20
x (1 +
11
20
x ) +
1
2
x (1 +
11
20
x )(1 +
11
20
x ) +
9
20
                                             = 1(1 +
11
20
x ) +
11
20
x (1 +
11
20
x ) +
1
2
x (1 +
11
20
x )(1 +
11
20
x ) +
9
20
x (1 +
1
2
x )
                                             = 1 × 1 + 1 ×
11
20
x +
11
20
x (1 +
11
20
x ) +
1
2
x (1 +
11
20
x )(1 +
11
20
x )
                                             = 1 +
11
20
x +
11
20
x (1 +
11
20
x ) +
1
2
x (1 +
11
20
x )(1 +
11
20
x ) +
9
20
x
                                             = 1 +
11
20
x +
11
20
x × 1 +
11
20
x ×
11
20
x +
1
2
x
                                             = 1 +
11
20
x +
11
20
x +
121
400
x x +
1
2
x (1 +
11
20
x )(1 +
11
20
x )
                                             = 1 +
11
10
x +
121
400
x x +
1
2
x (1 +
11
20
x )(1 +
11
20
x ) +
9
20
x
                                             = 1 +
11
10
x +
121
400
x x +
1
2
x × 1(1 +
11
20
x ) +
1
2
x
                                             = 1 +
11
10
x +
121
400
x x +
1
2
x (1 +
11
20
x ) +
11
40
x x
                                             = 1 +
11
10
x +
121
400
x x +
1
2
x × 1 +
1
2
x ×
11
20
                                             = 1 +
11
10
x +
121
400
x x +
1
2
x +
11
40
x x +
11
40
                                             = 1 +
8
5
x +
121
400
x x +
11
40
x x +
11
40
x x
                                             = 1 +
8
5
x +
121
400
x x +
11
40
x x +
11
40
x x
                                             = 1 +
8
5
x +
121
400
x x +
11
40
x x +
11
40
x x
                                             = 1 +
8
5
x +
121
400
x x +
11
40
x x +
11
40
x x
                                             = 1 +
8
5
x +
121
400
x x +
11
40
x x +
11
40
x x
                                             = 1 +
8
5
x +
121
400
x x +
11
40
x x +
11
40
x x
                                             = 1 +
8
5
x +
121
400
x x +
11
40
x x +
11
40
x x
                                             = 1 +
8
5
x +
121
400
x x +
11
40
x x +
11
40
x x
                                             = 1 +
8
5
x +
121
400
x x +
11
40
x x +
11
40
x x

    After the equation is converted into a general formula, there is a common factor:
    ( x +0 )
    From
        x + 0 = 0

    it is concluded that::
        x1=0

    Solutions that cannot be obtained by factorization:
        x2≈-4.405561 , keep 6 decimal places
        x3≈-0.970638 , keep 6 decimal places
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。