Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 20(1+2%a)×20×2.5×0.3%a+5(1+6%)×20×4×0.25%a = [20(1+2%a)×20×2.5+5(1+6%a)×20×4]×5/18a% .
    Question type: Equation
    Solution:Original question:
     20(1 +
2
100
a ) × 20 ×
5
2
×
3
1000
a + 5(1 +
6
100
) × 20 × 4 ×
1
400
a = (20(1 +
2
100
a ) × 20 ×
5
2
+ 5(1 +
6
100
a ) × 20 × 4) × 5 ÷ 18 × a
     Left side of the equation = 3(1 +
2
100
a ) a + 1(1 +
6
100
) a
    The equation is transformed into :
     3(1 +
2
100
a ) a + 1(1 +
6
100
) a = (20(1 +
2
100
a ) × 20 ×
5
2
+ 5(1 +
6
100
a ) × 20 × 4) × 5 ÷ 18 × a
    Remove the bracket on the left of the equation:
     Left side of the equation = 3 × 1 a + 3 ×
2
100
a a + 1(1 +
6
100
) a
                                             = 3 a +
3
50
a a + 1(1 +
6
100
) a
                                             = 3 a +
3
50
a a + 1 × 1 a + 1 ×
6
100
a
                                             = 3 a +
3
50
a a + 1 a +
3
50
a
                                             =
203
50
a +
3
50
a a
    The equation is transformed into :
     
203
50
a +
3
50
a a = (20(1 +
2
100
a ) × 20 ×
5
2
+ 5(1 +
6
100
a ) × 20 × 4) × 5 ÷ 18 × a
     Right side of the equation = (20(1 +
2
100
a ) × 20 ×
5
2
+ 5(1 +
6
100
a ) × 20 × 4) ×
5
18
a
    The equation is transformed into :
     
203
50
a +
3
50
a a = (20(1 +
2
100
a ) × 20 ×
5
2
+ 5(1 +
6
100
a ) × 20 × 4) ×
5
18
a
    Remove the bracket on the right of the equation:
     Right side of the equation = 20(1 +
2
100
a ) × 20 ×
5
2
×
5
18
a + 5(1 +
6
100
a ) × 20 × 4 ×
5
18
a
                                               =
2500
9
(1 +
2
100
a ) a +
1000
9
(1 +
6
100
a ) a
                                               =
2500
9
× 1 a +
2500
9
×
2
100
a a +
1000
9
(1 +
6
100
a ) a
                                               =
2500
9
a +
50
9
a a +
1000
9
(1 +
6
100
a ) a
                                               =
2500
9
a +
50
9
a a +
1000
9
× 1 a +
1000
9
×
6
100
a a
                                               =
2500
9
a +
50
9
a a +
1000
9
a +
20
3
a a
                                               =
3500
9
a +
50
9
a a +
20
3
a a
    The equation is transformed into :
     
203
50
a +
3
50
a a =
3500
9
a +
50
9
a a +
20
3
a a

    After the equation is converted into a general formula, it is converted into:
    ( a +0 )( 4a - 11 )=0
    From
        a + 0 = 0
        4a - 11 = 0

    it is concluded that::
        a1=0
        a2=
11
4
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。