Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (a-360)(1-0.25)/3800 = (a-660)(1-0.25)/2800 .
    Question type: Equation
    Solution:Original question:
     ( a 360)(1
1
4
) ÷ 3800 = ( a 660)(1
1
4
) ÷ 2800
    Remove the bracket on the left of the equation:
     Left side of the equation = a (1
1
4
) ×
1
3800
360(1
1
4
) ×
1
3800
                                             = a (1
1
4
) ×
1
3800
9
95
(1
1
4
)
                                             = a × 1 ×
1
3800
a ×
1
4
×
1
3800
9
95
(1
1
4
)
                                             = a ×
1
3800
a ×
1
15200
9
95
(1
1
4
)
                                             =
3
15200
a
9
95
(1
1
4
)
                                             =
3
15200
a
9
95
× 1 +
9
95
×
1
4
                                             =
3
15200
a
9
95
+
9
380
                                             =
3
15200
a
27
380
    The equation is transformed into :
     
3
15200
a
27
380
= ( a 660)(1
1
4
) ÷ 2800
    Remove the bracket on the right of the equation:
     Right side of the equation = a (1
1
4
) ×
1
2800
660(1
1
4
) ×
1
2800
                                               = a (1
1
4
) ×
1
2800
33
140
(1
1
4
)
                                               = a × 1 ×
1
2800
a ×
1
4
×
1
2800
33
140
(1
1
4
)
                                               = a ×
1
2800
a ×
1
11200
33
140
(1
1
4
)
                                               =
3
11200
a
33
140
(1
1
4
)
                                               =
3
11200
a
33
140
× 1 +
33
140
×
1
4
                                               =
3
11200
a
33
140
+
33
560
                                               =
3
11200
a
99
560
    The equation is transformed into :
     
3
15200
a
27
380
=
3
11200
a
99
560

    Transposition :
     
3
15200
a
3
11200
a = -
99
560
+
27
380

    Combine the items on the left of the equation:
      -
3
42560
a = -
99
560
+
27
380

    Combine the items on the right of the equation:
      -
3
42560
a = -
225
2128

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
225
2128
=
3
42560
a

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
3
42560
a =
225
2128

    The coefficient of the unknown number is reduced to 1 :
      a =
225
2128
÷
3
42560
        =
225
2128
×
42560
3
        = 75 × 20

    We obtained :
      a = 1500
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。