Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 10000*(x-50)*(-0.05x+5.5)-60*2500-100000 = 0 .
    Question type: Equation
    Solution:Original question:
     10000( x 50)( -
1
20
x +
11
2
)60 × 2500100000 = 0
     Left side of the equation = 10000( x 50)( -
1
20
x +
11
2
)150000100000
                                             = 10000( x 50)( -
1
20
x +
11
2
)250000
    The equation is transformed into :
     10000( x 50)( -
1
20
x +
11
2
)250000 = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 10000 x ( -
1
20
x +
11
2
)10000 × 50( -
1
20
x +
11
2
)250000
                                             = 10000 x ( -
1
20
x +
11
2
)500000( -
1
20
x +
11
2
)250000
                                             = - 10000 x ×
1
20
x + 10000 x ×
11
2
500000( -
1
20
x +
11
2
)250000
                                             = - 500 x x + 55000 x 500000( -
1
20
x +
11
2
)250000
                                             = - 500 x x + 55000 x + 500000 ×
1
20
x 500000 ×
11
2
250000
                                             = - 500 x x + 55000 x + 25000 x 2750000250000
                                             = - 500 x x + 80000 x 3000000
    The equation is transformed into :
      - 500 x x + 80000 x 3000000 = 0

    After the equation is converted into a general formula, it is converted into:
    ( x - 60 )( x - 100 )=0
    From
        x - 60 = 0
        x - 100 = 0

    it is concluded that::
        x1=60
        x2=100
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。