Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (3+1/5)(5+1/3)(X+2) = (4X+16)(48/15) .
    Question type: Equation
    Solution:Original question:
     (3 + 1 ÷ 5)(5 + 1 ÷ 3)( X + 2) = (4 X + 16)(48 ÷ 15)
    Remove the bracket on the left of the equation:
     Left side of the equation = 3(5 + 1 ÷ 3)( X + 2) + 1 ÷ 5 × (5 + 1 ÷ 3)( X + 2)
                                             = 3(5 + 1 ÷ 3)( X + 2) +
1
5
(5 + 1 ÷ 3)( X + 2)
                                             = 3 × 5( X + 2) + 3 × 1 ÷ 3 × ( X + 2) +
1
5
(5 + 1 ÷ 3)( X + 2)
                                             = 15( X + 2) + 1( X + 2) +
1
5
(5 + 1 ÷ 3)( X + 2)
                                             = 15 X + 15 × 2 + 1( X + 2) +
1
5
(5 + 1 ÷ 3)( X + 2)
                                             = 15 X + 30 + 1( X + 2) +
1
5
(5 + 1 ÷ 3)( X + 2)
                                             = 15 X + 30 + 1 X + 1 × 2 +
1
5
(5 + 1 ÷ 3)( X + 2)
                                             = 15 X + 30 + 1 X + 2 +
1
5
(5 + 1 ÷ 3)( X + 2)
                                             = 16 X + 32 +
1
5
(5 + 1 ÷ 3)( X + 2)
                                             = 16 X + 32 +
1
5
× 5( X + 2) +
1
5
× 1 ÷ 3 × ( X + 2)
                                             = 16 X + 32 + 1( X + 2) +
1
15
( X + 2)
                                             = 16 X + 32 + 1 X + 1 × 2 +
1
15
( X + 2)
                                             = 16 X + 32 + 1 X + 2 +
1
15
( X + 2)
                                             = 17 X + 34 +
1
15
( X + 2)
                                             = 17 X + 34 +
1
15
X +
1
15
× 2
                                             = 17 X + 34 +
1
15
X +
2
15
                                             =
256
15
X +
512
15
    The equation is transformed into :
     
256
15
X +
512
15
= (4 X + 16)(48 ÷ 15)
    Remove the bracket on the right of the equation:
     Right side of the equation = 4 X (48 ÷ 15) + 16(48 ÷ 15)
                                               = 4 X × 48 ÷ 15 + 16(48 ÷ 15)
                                               =
64
5
X + 16(48 ÷ 15)
                                               =
64
5
X + 16 × 48 ÷ 15
                                               =
64
5
X +
256
5
    The equation is transformed into :
     
256
15
X +
512
15
=
64
5
X +
256
5

    Transposition :
     
256
15
X
64
5
X =
256
5
512
15

    Combine the items on the left of the equation:
     
64
15
X =
256
5
512
15

    Combine the items on the right of the equation:
     
64
15
X =
256
15

    The coefficient of the unknown number is reduced to 1 :
      X =
256
15
÷
64
15
        =
256
15
×
15
64
        = 4 × 1

    We obtained :
      X = 4
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。