| 8 | ÷ | ( | 1 | + | x | ) | + | 8 | ÷ | ( | 1 | + | 2 | x | ) | + | 125 | ÷ | ( | 1 | + | 3 | x | ) | = | 105 |
| Multiply both sides of the equation by: | ( | 1 | + | x | ) |
| 8 | + | 8 | ÷ | ( | 1 | + | 2 | x | ) | × | ( | 1 | + | x | ) | + | 125 | ÷ | ( | 1 | + | 3 | x | ) | × | ( | 1 | + | x | ) | = | 105 | ( | 1 | + | x | ) |
| 8 | + | 8 | ÷ | ( | 1 | + | 2 | x | ) | × | 1 | + | 8 | ÷ | ( | 1 | + | 2 | x | ) | × | x | + | 125 | ÷ | ( | 1 | + | 3 | x | ) | × | ( | 1 | + | x | ) | = | 105 | ( | 1 | + | x | ) |
| 8 | + | 8 | ÷ | ( | 1 | + | 2 | x | ) | × | 1 | + | 8 | ÷ | ( | 1 | + | 2 | x | ) | × | x | + | 125 | ÷ | ( | 1 | + | 3 | x | ) | × | ( | 1 | + | x | ) | = | 105 | × | 1 | + | 105 | x |
| 8 | + | 8 | ÷ | ( | 1 | + | 2 | x | ) | + | 8 | ÷ | ( | 1 | + | 2 | x | ) | × | x | + | 125 | ÷ | ( | 1 | + | 3 | x | ) | × | ( | 1 | + | x | ) | = | 105 | + | 105 | x |
| Multiply both sides of the equation by: | ( | 1 | + | 2 | x | ) |
| 8 | ( | 1 | + | 2 | x | ) | + | 8 | + | 8 | x | + | 125 | ÷ | ( | 1 | + | 3 | x | ) | × | ( | 1 | + | x | ) | ( | 1 | + | 2 | x | ) | = | 105 | ( | 1 | + | 2 | x | ) | + | 105 | x | ( | 1 | + | 2 | x | ) |
| 8 | × | 1 | + | 8 | × | 2 | x | + | 8 | + | 8 | x | + | 125 | ÷ | ( | 1 | + | 3 | x | ) | × | ( | 1 | + | x | ) | ( | 1 | + | 2 | x | ) | = | 105 | ( | 1 | + | 2 | x | ) | + | 105 | x | ( | 1 | + | 2 | x | ) |
| 8 | × | 1 | + | 8 | × | 2 | x | + | 8 | + | 8 | x | + | 125 | ÷ | ( | 1 | + | 3 | x | ) | × | ( | 1 | + | x | ) | ( | 1 | + | 2 | x | ) | = | 105 | × | 1 | + | 105 | × | 2 | x | + | 105 | x | ( | 1 | + | 2 | x | ) |
| 8 | + | 16 | x | + | 8 | + | 8 | x | + | 125 | ÷ | ( | 1 | + | 3 | x | ) | × | ( | 1 | + | x | ) | ( | 1 | + | 2 | x | ) | = | 105 | + | 210 | x | + | 105 | x | ( | 1 | + | 2 | x | ) |
| 16 | + | 24 | x | + | 125 | ÷ | ( | 1 | + | 3 | x | ) | × | ( | 1 | + | x | ) | ( | 1 | + | 2 | x | ) | = | 105 | + | 210 | x | + | 105 | x | ( | 1 | + | 2 | x | ) |
| Multiply both sides of the equation by: | ( | 1 | + | 3 | x | ) |
| 16 | ( | 1 | + | 3 | x | ) | + | 24 | x | ( | 1 | + | 3 | x | ) | + | 125 | ( | 1 | + | x | ) | ( | 1 | + | 2 | x | ) | = | 105 | ( | 1 | + | 3 | x | ) | + | 210 | x | ( | 1 | + | 3 | x | ) | + | 105 | x | ( | 1 | + | 2 | x | ) | ( | 1 | + | 3 | x | ) |
| 16 | × | 1 | + | 16 | × | 3 | x | + | 24 | x | ( | 1 | + | 3 | x | ) | + | 125 | ( | 1 | + | x | ) | ( | 1 | + | 2 | x | ) | = | 105 | ( | 1 | + | 3 | x | ) | + | 210 | x | ( | 1 | + | 3 | x | ) | + | 105 | x | ( | 1 | + | 2 | x | ) | ( | 1 | + | 3 | x | ) |
| 16 | × | 1 | + | 16 | × | 3 | x | + | 24 | x | ( | 1 | + | 3 | x | ) | + | 125 | ( | 1 | + | x | ) | ( | 1 | + | 2 | x | ) | = | 105 | × | 1 | + | 105 | × | 3 | x | + | 210 | x | ( | 1 | + | 3 | x | ) | + | 105 | x | ( | 1 | + | 2 | x | ) | ( | 1 | + | 3 | x | ) |
| 16 | + | 48 | x | + | 24 | x | ( | 1 | + | 3 | x | ) | + | 125 | ( | 1 | + | x | ) | ( | 1 | + | 2 | x | ) | = | 105 | + | 315 | x | + | 210 | x | ( | 1 | + | 3 | x | ) | + | 105 | x | ( | 1 | + | 2 | x | ) | ( | 1 | + | 3 | x | ) |
| 16 | + | 48 | x | + | 24 | x | × | 1 | + | 24 | x | × | 3 | x | + | 125 | ( | 1 | + | x | ) | = | 105 | + | 315 | x | + | 210 | x | ( | 1 | + | 3 | x | ) | + | 105 | x | ( | 1 | + | 2 | x | ) | ( | 1 | + | 3 | x | ) |
| 16 | + | 48 | x | + | 24 | x | × | 1 | + | 24 | x | × | 3 | x | + | 125 | ( | 1 | + | x | ) | = | 105 | + | 315 | x | + | 210 | x | × | 1 | + | 210 | x | × | 3 | x | + | 105 | x |
| 16 | + | 48 | x | + | 24 | x | + | 72 | x | x | + | 125 | ( | 1 | + | x | ) | ( | 1 | + | 2 | x | ) | = | 105 | + | 315 | x | + | 210 | x | + | 630 | x | x | + | 105 | x | ( | 1 | + | 2 | x | ) | ( | 1 | + | 3 | x | ) |
| 16 | + | 72 | x | + | 72 | x | x | + | 125 | ( | 1 | + | x | ) | ( | 1 | + | 2 | x | ) | = | 105 | + | 525 | x | + | 630 | x | x | + | 105 | x | ( | 1 | + | 2 | x | ) | ( | 1 | + | 3 | x | ) |
| 16 | + | 72 | x | + | 72 | x | x | + | 125 | × | 1 | ( | 1 | + | 2 | x | ) | + | 125 | x | ( | 1 | + | 2 | x | ) | = | 105 | + | 525 | x | + | 630 | x | x | + | 105 | x | ( | 1 | + | 2 | x | ) | ( | 1 | + | 3 | x | ) |
| 16 | + | 72 | x | + | 72 | x | x | + | 125 | × | 1 | ( | 1 | + | 2 | x | ) | + | 125 | x | ( | 1 | + | 2 | x | ) | = | 105 | + | 525 | x | + | 630 | x | x | + | 105 | x | × | 1 | ( | 1 | + | 3 | x | ) | + | 105 | x |
| 16 | + | 72 | x | + | 72 | x | x | + | 125 | ( | 1 | + | 2 | x | ) | + | 125 | x | ( | 1 | + | 2 | x | ) | = | 105 | + | 525 | x | + | 630 | x | x | + | 105 | x | ( | 1 | + | 3 | x | ) | + | 210 | x | x |
| 16 | + | 72 | x | + | 72 | x | x | + | 125 | × | 1 | + | 125 | × | 2 | x | + | 125 | = | 105 | + | 525 | x | + | 630 | x | x | + | 105 | x | ( | 1 | + | 3 | x | ) | + | 210 | x | x |
| 16 | + | 72 | x | + | 72 | x | x | + | 125 | × | 1 | + | 125 | × | 2 | x | + | 125 | = | 105 | + | 525 | x | + | 630 | x | x | + | 105 | x | × | 1 | + | 105 | x | × | 3 |