Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 4+2m = 8+0.5*(4+m)*(4-0.5m)+0.5*(0.5m-2) .
    Question type: Equation
    Solution:Original question:
     4 + 2 m = 8 +
1
2
(4 + m )(4
1
2
m ) +
1
2
(
1
2
m 2)
    Remove the bracket on the right of the equation:
     Right side of the equation = 8 +
1
2
× 4(4
1
2
m ) +
1
2
m (4
1
2
m ) +
1
2
(
1
2
m 2)
                                               = 8 + 2(4
1
2
m ) +
1
2
m (4
1
2
m ) +
1
2
(
1
2
m 2)
                                               = 8 + 2 × 42 ×
1
2
m +
1
2
m (4
1
2
m ) +
1
2
(
1
2
m 2)
                                               = 8 + 81 m +
1
2
m (4
1
2
m ) +
1
2
(
1
2
m 2)
                                               = 161 m +
1
2
m (4
1
2
m ) +
1
2
(
1
2
m 2)
                                               = 161 m +
1
2
m × 4
1
2
m ×
1
2
m +
1
2
(
1
2
m 2)
                                               = 161 m + 2 m
1
4
m m +
1
2
(
1
2
m 2)
                                               = 16 + 1 m
1
4
m m +
1
2
(
1
2
m 2)
                                               = 16 + 1 m
1
4
m m +
1
2
×
1
2
m
1
2
× 2
                                               = 16 + 1 m
1
4
m m +
1
4
m 1
                                               = 15 +
5
4
m
1
4
m m
    The equation is transformed into :
     4 + 2 m = 15 +
5
4
m
1
4
m m

    The solution of the equation:
        m1≈-8.300735 , keep 6 decimal places
        m2≈5.300735 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。