| 3 | ( | 1 | ÷ | x | + | 1 | ÷ | ( | x | + | 6 | ) | ) | + | ( | x | − | 3 | ) | × | 1 | ÷ | ( | x | + | 6 | ) | = | 1 |
| Multiply both sides of the equation by: | ( | x | + | 6 | ) |
| 3 | ( | 1 | ÷ | x | + | 1 | ÷ | ( | x | + | 6 | ) | ) | ( | x | + | 6 | ) | + | ( | x | − | 3 | ) | × | 1 | = | 1 | ( | x | + | 6 | ) |
| 3 | × | 1 | ÷ | x | × | ( | x | + | 6 | ) | + | 3 | × | 1 | ÷ | ( | x | + | 6 | ) | × | ( | x | + | 6 | ) | + | ( | x | − | 3 | ) | × | 1 | = | 1 | ( | x | + | 6 | ) |
| 3 | × | 1 | ÷ | x | × | ( | x | + | 6 | ) | + | 3 | × | 1 | ÷ | ( | x | + | 6 | ) | × | ( | x | + | 6 | ) | + | ( | x | − | 3 | ) | × | 1 | = | 1 | x | + | 1 | × | 6 |
| 3 | ÷ | x | × | ( | x | + | 6 | ) | + | 3 | ÷ | ( | x | + | 6 | ) | × | ( | x | + | 6 | ) | + | ( | x | − | 3 | ) | × | 1 | = | 1 | x | + | 6 |
| Multiply both sides of the equation by: | x |
| 3 | ( | x | + | 6 | ) | + | 3 | ÷ | ( | x | + | 6 | ) | × | ( | x | + | 6 | ) | x | + | ( | x | − | 3 | ) | × | 1 | x | = | 1 | x | x | + | 6 | x |
| 3 | x | + | 3 | × | 6 | + | 3 | ÷ | ( | x | + | 6 | ) | × | ( | x | + | 6 | ) | x | + | ( | x | − | 3 | ) | × | 1 | x | = | 1 | x | x | + | 6 | x |
| 3 | x | + | 18 | + | 3 | ÷ | ( | x | + | 6 | ) | × | ( | x | + | 6 | ) | x | + | ( | x | − | 3 | ) | × | 1 | x | = | 1 | x | x | + | 6 | x |
| Multiply both sides of the equation by: | ( | x | + | 6 | ) |
| 3 | x | ( | x | + | 6 | ) | + | 18 | ( | x | + | 6 | ) | + | 3 | ( | x | + | 6 | ) | x | + | ( | x | − | 3 | ) | × | 1 | x | ( | x | + | 6 | ) | = | 1 | x | x | ( | x | + | 6 | ) | + | 6 | x | ( | x | + | 6 | ) |
| 3 | x | x | + | 3 | x | × | 6 | + | 18 | ( | x | + | 6 | ) | + | 3 | ( | x | + | 6 | ) | x | + | ( | x | − | 3 | ) | = | 1 | x | x | ( | x | + | 6 | ) | + | 6 | x | ( | x | + | 6 | ) |
| 3 | x | x | + | 3 | x | × | 6 | + | 18 | ( | x | + | 6 | ) | + | 3 | ( | x | + | 6 | ) | x | + | ( | x | − | 3 | ) | = | 1 | x | x | x | + | 1 | x | x | × | 6 | + | 6 | x | ( | x | + | 6 | ) |
| 3 | x | x | + | 18 | x | + | 18 | ( | x | + | 6 | ) | + | 3 | ( | x | + | 6 | ) | x | + | ( | x | − | 3 | ) | × | 1 | = | 1 | x | x | x | + | 6 | x | x | + | 6 | x | ( | x | + | 6 | ) |
| 3 | x | x | + | 18 | x | + | 18 | x | + | 18 | × | 6 | + | 3 | ( | x | + | 6 | ) | x | = | 1 | x | x | x | + | 6 | x | x | + | 6 | x | ( | x | + | 6 | ) |
| 3 | x | x | + | 18 | x | + | 18 | x | + | 18 | × | 6 | + | 3 | ( | x | + | 6 | ) | x | = | 1 | x | x | x | + | 6 | x | x | + | 6 | x | x | + | 6 | x |
| 3 | x | x | + | 18 | x | + | 18 | x | + | 108 | + | 3 | ( | x | + | 6 | ) | x | + | ( | x | − | 3 | ) | = | 1 | x | x | x | + | 6 | x | x | + | 6 | x | x | + | 36 | x |
| 3 | x | x | + | 36 | x | + | 108 | + | 3 | ( | x | + | 6 | ) | x | + | ( | x | − | 3 | ) | × | 1 | x | = | 1 | x | x | x | + | 6 | x | x | + | 6 | x | x | + | 36 | x |
| 3 | x | x | + | 36 | x | + | 108 | + | 3 | x | x | + | 3 | × | 6 | x | = | 1 | x | x | x | + | 6 | x | x | + | 6 | x | x | + | 36 | x |
| 3 | x | x | + | 36 | x | + | 108 | + | 3 | x | x | + | 18 | x | + | ( | x | − | 3 | ) | = | 1 | x | x | x | + | 6 | x | x | + | 6 | x | x | + | 36 | x |
| 3 | x | x | + | 54 | x | + | 108 | + | 3 | x | x | + | ( | x | − | 3 | ) | × | 1 | x | = | 1 | x | x | x | + | 6 | x | x | + | 6 | x | x | + | 36 | x |
| 3 | x | x | + | 54 | x | + | 108 | + | 3 | x | x | + | x | × | 1 | x | = | 1 | x | x | x | + | 6 | x | x | + | 6 | x | x | + | 36 | x |
| 3 | x | x | + | 54 | x | + | 108 | + | 3 | x | x | + | x | × | 1 | x | = | 1 | x | x | x | + | 6 | x | x | + | 6 | x | x | + | 36 | x |
| 3 | x | x | + | 54 | x | + | 108 | + | 3 | x | x | + | x | × | 1 | x | = | 1 | x | x | x | + | 6 | x | x | + | 6 | x | x | + | 36 | x |
| 3 | x | x | + | 54 | x | + | 108 | + | 3 | x | x | + | x | × | 1 | x | = | 1 | x | x | x | + | 6 | x | x | + | 6 | x | x | + | 36 | x |