Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation [1.2×(15+5+0.15)+1.4×(3.0+2.0+2.0)]×1.2×0.6 = 24.47kN .
    Question type: Equation
    Solution:Original question:
     (
6
5
(15 + 5 +
3
20
) +
7
5
(3 + 2 + 2)) ×
6
5
×
3
5
=
2447
100
k
     Left side of the equation = (
6
5
(15 + 5 +
3
20
) +
7
5
(3 + 2 + 2)) ×
18
25
    The equation is transformed into :
     (
6
5
(15 + 5 +
3
20
) +
7
5
(3 + 2 + 2)) ×
18
25
=
2447
100
k
    Remove the bracket on the left of the equation:
     Left side of the equation =
6
5
(15 + 5 +
3
20
) ×
18
25
+
7
5
(3 + 2 + 2) ×
18
25
                                             =
108
125
(15 + 5 +
3
20
) +
126
125
(3 + 2 + 2)
                                             =
108
125
× 15 +
108
125
× 5 +
108
125
×
3
20
+
126
125
(3 + 2 + 2)
                                             =
324
25
+
108
25
+
81
625
+
126
125
(3 + 2 + 2)
                                             =
10881
625
+
126
125
(3 + 2 + 2)
                                             =
10881
625
+
126
125
× 3 +
126
125
× 2 +
126
125
× 2
                                             =
10881
625
+
378
125
+
252
125
+
252
125
                                             =
15291
625
    The equation is transformed into :
     
15291
625
=
2447
100
k

    Transposition :
      -
2447
100
k = -
15291
625

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
15291
625
=
2447
100
k

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
2447
100
k =
15291
625

    The coefficient of the unknown number is reduced to 1 :
      k =
15291
625
÷
2447
100
        =
15291
625
×
100
2447
        =
15291
25
×
4
2447

    We obtained :
      k =
61164
61175
    This is the solution of the equation.

    Convert the result to decimal form :
      k = 0.99982



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。