Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 11x+(x÷4)+(x÷6)+3×(x-790)+{8×(x-790)÷12}+29×(x-930)+{(x-930)÷12}×15+10000+1666.67+500 = 368661.96 .
    Question type: Equation
    Solution:Original question:
     11 x + ( x ÷ 4) + ( x ÷ 6) + 3( x 790) + (8( x 790) ÷ 12) + 29( x 930) + (( x 930) ÷ 12) × 15 + 10000 =
9216549
25
     Left side of the equation = 11 x + ( x ÷ 4) + ( x ÷ 6) + 3( x 790) + (8( x 790) ÷ 12) + 29( x 930) + (( x 930) ÷ 12) × 15 +
1216667
100
    The equation is transformed into :
     11 x + ( x ÷ 4) + ( x ÷ 6) + 3( x 790) + (8( x 790) ÷ 12) + 29( x 930) + (( x 930) ÷ 12) × 15 +
1216667
100
=
9216549
25
    Remove the bracket on the left of the equation:
     Left side of the equation = 11 x + x ÷ 4 + ( x ÷ 6) + 3( x 790) + (8( x 790) ÷ 12) + 29( x 930) + (( x 930) ÷ 12) × 15
                                             =
45
4
x + ( x ÷ 6) + 3( x 790) + (8( x 790) ÷ 12) + 29( x 930) + (( x 930) ÷ 12) × 15 +
1216667
100
                                             =
45
4
x + x ÷ 6 + 3( x 790) + (8( x 790) ÷ 12) + 29( x 930) + (( x 930) ÷ 12) × 15 +
1216667
100
                                             =
137
12
x + 3( x 790) + (8( x 790) ÷ 12) + 29( x 930) + (( x 930) ÷ 12) × 15 +
1216667
100
                                             =
137
12
x + 3 x 3 × 790 + (8( x 790) ÷ 12) + 29( x 930) + (( x 930) ÷ 12) × 15 +
1216667
100
                                             =
137
12
x + 3 x 2370 + (8( x 790) ÷ 12) + 29( x 930) + (( x 930) ÷ 12) × 15 +
1216667
100
                                             =
173
12
x +
979667
100
+ (8( x 790) ÷ 12) + 29( x 930) + (( x 930) ÷ 12) × 15
                                             =
173
12
x +
979667
100
+ 8( x 790) ÷ 12 + 29( x 930) + (( x 930) ÷ 12) × 15
                                             =
173
12
x +
979667
100
+
2
3
( x 790) + 29( x 930) + (( x 930) ÷ 12) × 15
                                             =
173
12
x +
979667
100
+
2
3
x
2
3
× 790 + 29( x 930) + (( x 930) ÷ 12) × 15
                                             =
173
12
x +
979667
100
+
2
3
x
1580
3
+ 29( x 930) + (( x 930) ÷ 12) × 15
                                             =
181
12
x +
2781001
300
+ 29( x 930) + (( x 930) ÷ 12) × 15
                                             =
181
12
x +
2781001
300
+ 29 x 29 × 930 + (( x 930) ÷ 12) × 15
                                             =
181
12
x +
2781001
300
+ 29 x 26970 + (( x 930) ÷ 12) × 15
                                             =
529
12
x
5309999
300
+ (( x 930) ÷ 12) × 15
                                             =
529
12
x
5309999
300
+ ( x 930) ÷ 12 × 15
                                             =
529
12
x
5309999
300
+ ( x 930) ×
5
4
                                             =
529
12
x
5309999
300
+ x ×
5
4
930 ×
5
4
                                             =
529
12
x
5309999
300
+ x ×
5
4
2325
2
                                             =
136
3
x
5658749
300
    The equation is transformed into :
     
136
3
x
5658749
300
=
9216549
25

    Transposition :
     
136
3
x =
9216549
25
+
5658749
300

    Combine the items on the right of the equation:
     
136
3
x =
116257337
300

    The coefficient of the unknown number is reduced to 1 :
      x =
116257337
300
÷
136
3
        =
116257337
300
×
3
136
        =
116257337
100
×
1
136

    We obtained :
      x =
116257337
13600
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 8548.333603



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。