Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation [(90Q-(580+20Q)-(90Q×13%-5Q)×10%]×(1-25%)+357.29 ) = 424.36 .
    Question type: Equation
    Solution:Original question:
     ((90 Q (580 + 20 Q )(90 Q ×
13
100
5 Q ) ×
10
100
)(1
25
100
) +
35729
100
) =
10609
25
    Remove the bracket on the left of the equation:
     Left side of the equation = (90 Q (580 + 20 Q )(90 Q ×
13
100
5 Q ) ×
10
100
)(1
25
100
) +
35729
100
                                             = 90 Q (1
25
100
)(580 + 20 Q )(1
25
100
)(90 Q ×
13
100
5 Q ) ×
10
100
(1
25
100
) +
35729
100
                                             = 90 Q × 190 Q ×
25
100
(580 + 20 Q )(1
25
100
)(90 Q ×
13
100
5 Q ) ×
10
100
(1
25
100
) +
35729
100
                                             = 90 Q
45
2
Q (580 + 20 Q )(1
25
100
)(90 Q ×
13
100
5 Q ) ×
10
100
(1
25
100
) +
35729
100
                                             =
135
2
Q (580 + 20 Q )(1
25
100
)(90 Q ×
13
100
5 Q ) ×
10
100
(1
25
100
) +
35729
100
                                             =
135
2
Q 580(1
25
100
)20 Q (1
25
100
)(90 Q ×
13
100
5 Q ) ×
10
100
(1
25
100
) +
35729
100
                                             =
135
2
Q 580 × 1 + 580 ×
25
100
20 Q (1
25
100
)(90 Q ×
13
100
5 Q ) ×
10
100
(1
25
100
)
                                             =
135
2
Q 580 + 14520 Q (1
25
100
)(90 Q ×
13
100
5 Q ) ×
10
100
(1
25
100
) +
35729
100
                                             =
135
2
Q
7771
100
20 Q (1
25
100
)(90 Q ×
13
100
5 Q ) ×
10
100
(1
25
100
)
                                             =
135
2
Q
7771
100
20 Q × 1 + 20 Q ×
25
100
(90 Q ×
13
100
5 Q ) ×
10
100
(1
25
100
)
                                             =
135
2
Q
7771
100
20 Q + 5 Q (90 Q ×
13
100
5 Q ) ×
10
100
(1
25
100
)
                                             =
105
2
Q
7771
100
(90 Q ×
13
100
5 Q ) ×
10
100
(1
25
100
)
                                             =
105
2
Q
7771
100
90 Q ×
13
100
×
10
100
(1
25
100
) + 5 Q ×
10
100
(1
25
100
)
                                             =
105
2
Q
7771
100
117
100
Q (1
25
100
) +
1
2
Q (1
25
100
)
                                             =
105
2
Q
7771
100
117
100
Q × 1 +
117
100
Q ×
25
100
+
1
2
Q (1
25
100
)
                                             =
105
2
Q
7771
100
117
100
Q +
117
400
Q +
1
2
Q (1
25
100
)
                                             =
20649
400
Q
7771
100
+
1
2
Q (1
25
100
)
                                             =
20649
400
Q
7771
100
+
1
2
Q × 1
1
2
Q ×
25
100
                                             =
20649
400
Q
7771
100
+
1
2
Q
1
8
Q
                                             =
20799
400
Q
7771
100
    The equation is transformed into :
     
20799
400
Q
7771
100
=
10609
25

    Transposition :
     
20799
400
Q =
10609
25
+
7771
100

    Combine the items on the right of the equation:
     
20799
400
Q =
50207
100

    The coefficient of the unknown number is reduced to 1 :
      Q =
50207
100
÷
20799
400
        =
50207
100
×
400
20799
        = 50207 ×
4
20799

    We obtained :
      Q =
200828
20799
    This is the solution of the equation.

    Convert the result to decimal form :
      Q = 9.655657



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。