Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation -6(292-2t)-4(296-4t)+2(296-4t)+(292-2t)*4+2*289*2 = 0 .
    Question type: Equation
    Solution:Original question:
      - 6(2922 t )4(2964 t ) + 2(2964 t ) + (2922 t ) × 4 + 2 × 289 × 2 = 0
     Left side of the equation = - 6(2922 t )4(2964 t ) + 2(2964 t ) + (2922 t ) × 4 + 1156
    The equation is transformed into :
      - 6(2922 t )4(2964 t ) + 2(2964 t ) + (2922 t ) × 4 + 1156 = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = - 6 × 292 + 6 × 2 t 4(2964 t ) + 2(2964 t ) + (2922 t ) × 4 + 1156
                                             = - 1752 + 12 t 4(2964 t ) + 2(2964 t ) + (2922 t ) × 4 + 1156
                                             = - 596 + 12 t 4(2964 t ) + 2(2964 t ) + (2922 t ) × 4
                                             = - 596 + 12 t 4 × 296 + 4 × 4 t + 2(2964 t ) + (2922 t ) × 4
                                             = - 596 + 12 t 1184 + 16 t + 2(2964 t ) + (2922 t ) × 4
                                             = - 1780 + 28 t + 2(2964 t ) + (2922 t ) × 4
                                             = - 1780 + 28 t + 2 × 2962 × 4 t + (2922 t ) × 4
                                             = - 1780 + 28 t + 5928 t + (2922 t ) × 4
                                             = - 1188 + 20 t + (2922 t ) × 4
                                             = - 1188 + 20 t + 292 × 42 t × 4
                                             = - 1188 + 20 t + 11688 t
                                             = - 20 + 12 t
    The equation is transformed into :
      - 20 + 12 t = 0

    Transposition :
     12 t = 0 + 20

    Combine the items on the right of the equation:
     12 t = 20

    The coefficient of the unknown number is reduced to 1 :
      t = 20 ÷ 12
        = 20 ×
1
12
        = 5 ×
1
3

    We obtained :
      t =
5
3
    This is the solution of the equation.

    Convert the result to decimal form :
      t = 1.666667



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。