2015 2 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 5 | ) | ) | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 5 | ) | ) |
2015 2 | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 5 | ) | ) | = | 170469 100 | ( | 1 | + | ( | x | ÷ | 12 | × | 5 | ) | ) |
2015 2 | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | × | 1 | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | × | ( | x | ÷ | 12 | × | 5 | ) | = | 170469 100 | ( | 1 | + | ( | x | ÷ | 12 | × | 5 | ) | ) |
2015 2 | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | × | 1 | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | × | ( | x | ÷ | 12 | × | 5 | ) | = | 170469 100 | × | 1 | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) |
2015 2 | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | × | ( | x | ÷ | 12 | × | 5 | ) | = | 170469 100 | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
2015 2 | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 81809 100 | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | × | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
2015 2 | × | 1 | + | 2015 2 | ( | x | ÷ | 12 | × | 11 | ) | + | 81809 100 | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | × | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
2015 2 | × | 1 | + | 2015 2 | ( | x | ÷ | 12 | × | 11 | ) | + | 81809 100 | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | × | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | × | 1 | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
2015 2 | + | 2015 2 | ( | x | ÷ | 12 | × | 11 | ) | + | 81809 100 | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | × | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | + | 2015 2 | ( | x | ÷ | 12 | × | 11 | ) | + | 81809 100 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | × | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 2015 2 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | × | 1 | + | 182559 100 | ( | x | ÷ | 12 | × | 11 | ) | + | 2015 2 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | × | 1 | + | 182559 100 | ( | x | ÷ | 12 | × | 11 | ) | + | 2015 2 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | × | 1 | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | + | 182559 100 | ( | x | ÷ | 12 | × | 11 | ) | + | 2015 2 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | + | 182559 100 | x | ÷ | 12 | × | 11 | + | 2015 2 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | + | 182559 100 | x | ÷ | 12 | × | 11 | + | 2015 2 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | + | 170469 100 | x | ÷ | 12 | × | 11 | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | + | 669383 400 | x | + | 2015 2 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | + | 625053 400 | x | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | + | 669383 400 | x | + | 2015 2 | x | ÷ | 12 | × | 11 | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | + | 625053 400 | x | + | 170469 100 | ( | x | ÷ | 12 | × | 11 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | + | 669383 400 | x | + | 2015 2 | x | ÷ | 12 | × | 11 | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | + | 625053 400 | x | + | 170469 100 | x | ÷ | 12 | × | 11 | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | + | 669383 400 | x | + | 22165 24 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | + | 625053 400 | x | + | 625053 400 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | + | 669383 400 | x | + | 22165 24 | x | × | 1 | + | 22165 24 | x | ( | x | ÷ | 12 | × | 11 | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | + | 625053 400 | x | + | 625053 400 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | + | 669383 400 | x | + | 22165 24 | x | × | 1 | + | 22165 24 | x | ( | x | ÷ | 12 | × | 11 | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | + | 625053 400 | x | + | 625053 400 | x | × | 1 | + | 625053 400 | x | ( | x | ÷ | 12 | × | 11 | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |
182559 100 | + | 669383 400 | x | + | 22165 24 | x | + | 22165 24 | x | ( | x | ÷ | 12 | × | 11 | ) | + | 81809 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | = | 170469 100 | + | 625053 400 | x | + | 625053 400 | x | + | 625053 400 | x | ( | x | ÷ | 12 | × | 11 | ) | + | 170469 100 | ( | x | ÷ | 12 | × | 5 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 11 | ) | ) |