Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1000 = 72.8/(1+r)+78.4/(1+r)2+81.2/(1+r)3+1134.2/(1+r)4 .
    Question type: Equation
    Solution:Original question:
     1000 =
364
5
÷ (1 + r ) +
392
5
÷ (1 + r ) × 2 +
406
5
÷ (1 + r ) × 3 +
5671
5
÷ (1 + r ) × 4
     Multiply both sides of the equation by:(1 + r )
     1000(1 + r ) =
364
5
+
392
5
× 2 +
406
5
× 3 +
5671
5
× 4
    Remove a bracket on the left of the equation::
     1000 × 1 + 1000 r =
364
5
+
392
5
× 2 +
406
5
× 3 +
5671
5
× 4
    The equation is reduced to :
     1000 + 1000 r =
364
5
+
784
5
+
1218
5
+
22684
5
    The equation is reduced to :
     1000 + 1000 r = 5010

    Transposition :
     1000 r = 50101000

    Combine the items on the right of the equation:
     1000 r = 4010

    The coefficient of the unknown number is reduced to 1 :
      r = 4010 ÷ 1000
        = 4010 ×
1
1000
        = 401 ×
1
100

    We obtained :
      r =
401
100
    This is the solution of the equation.

    Convert the result to decimal form :
      r = 4.01



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。