Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (1/2020)(y+1)+3 = 2(y+1)+(18177/2020) .
    Question type: Equation
    Solution:Original question:
     (1 ÷ 2020)( y + 1) + 3 = 2( y + 1) + (18177 ÷ 2020)
    Remove the bracket on the left of the equation:
     Left side of the equation = 1 ÷ 2020 × ( y + 1) + 3
                                             =
1
2020
( y + 1) + 3
                                             =
1
2020
y +
1
2020
× 1 + 3
                                             =
1
2020
y +
1
2020
+ 3
                                             =
1
2020
y +
6061
2020
    The equation is transformed into :
     
1
2020
y +
6061
2020
= 2( y + 1) + (18177 ÷ 2020)
    Remove the bracket on the right of the equation:
     Right side of the equation = 2 y + 2 × 1 + (18177 ÷ 2020)
                                               = 2 y + 2 + (18177 ÷ 2020)
                                               = 2 y + 2 + 18177 ÷ 2020
                                               = 2 y + 2 +
18177
2020
                                               = 2 y +
22217
2020
    The equation is transformed into :
     
1
2020
y +
6061
2020
= 2 y +
22217
2020

    Transposition :
     
1
2020
y 2 y =
22217
2020
6061
2020

    Combine the items on the left of the equation:
      -
4039
2020
y =
22217
2020
6061
2020

    Combine the items on the right of the equation:
      -
4039
2020
y =
4039
505

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
      -
4039
505
=
4039
2020
y

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
4039
2020
y = -
4039
505

    The coefficient of the unknown number is reduced to 1 :
      y = -
4039
505
÷
4039
2020
        = -
4039
505
×
2020
4039
        = -
577
101
×
404
577

    We obtained :
      y = -
233108
58277
    This is the solution of the equation.

    By reducing fraction, we can get:
      y = - 4



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。