Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 6x+(3x+1)(6-51/(3x+1)-1.5) = 51 .
    Question type: Equation
    Solution:Original question:
     6 x + (3 x + 1)(651 ÷ (3 x + 1)
3
2
) = 51
    Remove a bracket on the left of the equation::
     6 x + 3 x (651 ÷ (3 x + 1)
3
2
) + 1(651 ÷ (3 x + 1)
3
2
) = 51
    Remove a bracket on the left of the equation:
     6 x + 3 x × 63 x × 51 ÷ (3 x + 1)3 x ×
3
2
= 51
    The equation is reduced to :
     6 x + 18 x 153 x ÷ (3 x + 1)
9
2
x + 1(651 ÷ (3 x + 1)
3
2
) = 51
    The equation is reduced to :
     
39
2
x 153 x ÷ (3 x + 1) + 1(651 ÷ (3 x + 1)
3
2
) = 51
     Multiply both sides of the equation by:(3 x + 1)
     
39
2
x (3 x + 1)153 x + 1(651 ÷ (3 x + 1)
3
2
)(3 x + 1) = 51(3 x + 1)
    Remove a bracket on the left of the equation:
     
39
2
x × 3 x +
39
2
x × 1153 x + 1(651 ÷ (3 x + 1)
3
2
)(3 x + 1) = 51(3 x + 1)
    Remove a bracket on the right of the equation::
     
39
2
x × 3 x +
39
2
x × 1153 x + 1(651 ÷ (3 x + 1)
3
2
)(3 x + 1) = 51 × 3 x + 51 × 1
    The equation is reduced to :
     
117
2
x x +
39
2
x 153 x + 1(651 ÷ (3 x + 1)
3
2
)(3 x + 1) = 153 x + 51
    The equation is reduced to :
     
117
2
x x
267
2
x + 1(651 ÷ (3 x + 1)
3
2
)(3 x + 1) = 153 x + 51
    Remove a bracket on the left of the equation:
     
117
2
x x
267
2
x + 1 × 6(3 x + 1)1 × 51 ÷ (3 x + 1) × (3 x + 1) = 153 x + 51
    The equation is reduced to :
     
117
2
x x
267
2
x + 6(3 x + 1)51 ÷ (3 x + 1) × (3 x + 1)
3
2
(3 x + 1) = 153 x + 51
     Multiply both sides of the equation by:(3 x + 1)
     
117
2
x x (3 x + 1)
267
2
x (3 x + 1) + 6(3 x + 1)(3 x + 1)51(3 x + 1) = 153 x (3 x + 1) + 51(3 x + 1)
    Remove a bracket on the left of the equation:
     
117
2
x x × 3 x +
117
2
x x × 1
267
2
x (3 x + 1) = 153 x (3 x + 1) + 51(3 x + 1)
    Remove a bracket on the right of the equation::
     
117
2
x x × 3 x +
117
2
x x × 1
267
2
x (3 x + 1) = 153 x × 3 x + 153 x × 1 + 51(3 x + 1)
    The equation is reduced to :
     
351
2
x x x +
117
2
x x
267
2
x (3 x + 1) + 6(3 x + 1) = 459 x x + 153 x + 51(3 x + 1)
    Remove a bracket on the left of the equation:
     
351
2
x x x +
117
2
x x
267
2
x × 3 x
267
2
= 459 x x + 153 x + 51(3 x + 1)
    Remove a bracket on the right of the equation::
     
351
2
x x x +
117
2
x x
267
2
x × 3 x
267
2
= 459 x x + 153 x + 51 × 3 x + 51 × 1
    The equation is reduced to :
     
351
2
x x x +
117
2
x x
801
2
x x
267
2
x = 459 x x + 153 x + 153 x + 51
    The equation is reduced to :
     
351
2
x x x +
117
2
x x
801
2
x x
267
2
x = 459 x x + 306 x + 51
    Remove a bracket on the left of the equation:
     
351
2
x x x +
117
2
x x
801
2
x x
267
2
x = 459 x x + 306 x + 51
    The equation is reduced to :
     
351
2
x x x +
117
2
x x
801
2
x x
267
2
x = 459 x x + 306 x + 51
    Remove a bracket on the left of the equation:
     
351
2
x x x +
117
2
x x
801
2
x x
267
2
x = 459 x x + 306 x + 51
    The equation is reduced to :
     
351
2
x x x +
117
2
x x
801
2
x x
267
2
x = 459 x x + 306 x + 51

    
        x=5
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。