| 6 | x | + | ( | 3 | x | + | 1 | ) | ( | 6 | − | 51 | ÷ | ( | 3 | x | + | 1 | ) | − | 3 2 | ) | = | 51 |
| 6 | x | + | 3 | x | ( | 6 | − | 51 | ÷ | ( | 3 | x | + | 1 | ) | − | 3 2 | ) | + | 1 | ( | 6 | − | 51 | ÷ | ( | 3 | x | + | 1 | ) | − | 3 2 | ) | = | 51 |
| 6 | x | + | 3 | x | × | 6 | − | 3 | x | × | 51 | ÷ | ( | 3 | x | + | 1 | ) | − | 3 | x | × | 3 2 | = | 51 |
| 6 | x | + | 18 | x | − | 153 | x | ÷ | ( | 3 | x | + | 1 | ) | − | 9 2 | x | + | 1 | ( | 6 | − | 51 | ÷ | ( | 3 | x | + | 1 | ) | − | 3 2 | ) | = | 51 |
39 2 | x | − | 153 | x | ÷ | ( | 3 | x | + | 1 | ) | + | 1 | ( | 6 | − | 51 | ÷ | ( | 3 | x | + | 1 | ) | − | 3 2 | ) | = | 51 |
| Multiply both sides of the equation by: | ( | 3 | x | + | 1 | ) |
39 2 | x | ( | 3 | x | + | 1 | ) | − | 153 | x | + | 1 | ( | 6 | − | 51 | ÷ | ( | 3 | x | + | 1 | ) | − | 3 2 | ) | ( | 3 | x | + | 1 | ) | = | 51 | ( | 3 | x | + | 1 | ) |
39 2 | x | × | 3 | x | + | 39 2 | x | × | 1 | − | 153 | x | + | 1 | ( | 6 | − | 51 | ÷ | ( | 3 | x | + | 1 | ) | − | 3 2 | ) | ( | 3 | x | + | 1 | ) | = | 51 | ( | 3 | x | + | 1 | ) |
39 2 | x | × | 3 | x | + | 39 2 | x | × | 1 | − | 153 | x | + | 1 | ( | 6 | − | 51 | ÷ | ( | 3 | x | + | 1 | ) | − | 3 2 | ) | ( | 3 | x | + | 1 | ) | = | 51 | × | 3 | x | + | 51 | × | 1 |
117 2 | x | x | + | 39 2 | x | − | 153 | x | + | 1 | ( | 6 | − | 51 | ÷ | ( | 3 | x | + | 1 | ) | − | 3 2 | ) | ( | 3 | x | + | 1 | ) | = | 153 | x | + | 51 |
117 2 | x | x | − | 267 2 | x | + | 1 | ( | 6 | − | 51 | ÷ | ( | 3 | x | + | 1 | ) | − | 3 2 | ) | ( | 3 | x | + | 1 | ) | = | 153 | x | + | 51 |
117 2 | x | x | − | 267 2 | x | + | 1 | × | 6 | ( | 3 | x | + | 1 | ) | − | 1 | × | 51 | ÷ | ( | 3 | x | + | 1 | ) | × | ( | 3 | x | + | 1 | ) | = | 153 | x | + | 51 |
117 2 | x | x | − | 267 2 | x | + | 6 | ( | 3 | x | + | 1 | ) | − | 51 | ÷ | ( | 3 | x | + | 1 | ) | × | ( | 3 | x | + | 1 | ) | − | 3 2 | ( | 3 | x | + | 1 | ) | = | 153 | x | + | 51 |
| Multiply both sides of the equation by: | ( | 3 | x | + | 1 | ) |
117 2 | x | x | ( | 3 | x | + | 1 | ) | − | 267 2 | x | ( | 3 | x | + | 1 | ) | + | 6 | ( | 3 | x | + | 1 | ) | ( | 3 | x | + | 1 | ) | − | 51 | ( | 3 | x | + | 1 | ) | = | 153 | x | ( | 3 | x | + | 1 | ) | + | 51 | ( | 3 | x | + | 1 | ) |
117 2 | x | x | × | 3 | x | + | 117 2 | x | x | × | 1 | − | 267 2 | x | ( | 3 | x | + | 1 | ) | = | 153 | x | ( | 3 | x | + | 1 | ) | + | 51 | ( | 3 | x | + | 1 | ) |
117 2 | x | x | × | 3 | x | + | 117 2 | x | x | × | 1 | − | 267 2 | x | ( | 3 | x | + | 1 | ) | = | 153 | x | × | 3 | x | + | 153 | x | × | 1 | + | 51 | ( | 3 | x | + | 1 | ) |
351 2 | x | x | x | + | 117 2 | x | x | − | 267 2 | x | ( | 3 | x | + | 1 | ) | + | 6 | ( | 3 | x | + | 1 | ) | = | 459 | x | x | + | 153 | x | + | 51 | ( | 3 | x | + | 1 | ) |
351 2 | x | x | x | + | 117 2 | x | x | − | 267 2 | x | × | 3 | x | − | 267 2 | = | 459 | x | x | + | 153 | x | + | 51 | ( | 3 | x | + | 1 | ) |
351 2 | x | x | x | + | 117 2 | x | x | − | 267 2 | x | × | 3 | x | − | 267 2 | = | 459 | x | x | + | 153 | x | + | 51 | × | 3 | x | + | 51 | × | 1 |
351 2 | x | x | x | + | 117 2 | x | x | − | 801 2 | x | x | − | 267 2 | x | = | 459 | x | x | + | 153 | x | + | 153 | x | + | 51 |
351 2 | x | x | x | + | 117 2 | x | x | − | 801 2 | x | x | − | 267 2 | x | = | 459 | x | x | + | 306 | x | + | 51 |
351 2 | x | x | x | + | 117 2 | x | x | − | 801 2 | x | x | − | 267 2 | x | = | 459 | x | x | + | 306 | x | + | 51 |
351 2 | x | x | x | + | 117 2 | x | x | − | 801 2 | x | x | − | 267 2 | x | = | 459 | x | x | + | 306 | x | + | 51 |
351 2 | x | x | x | + | 117 2 | x | x | − | 801 2 | x | x | − | 267 2 | x | = | 459 | x | x | + | 306 | x | + | 51 |
351 2 | x | x | x | + | 117 2 | x | x | − | 801 2 | x | x | − | 267 2 | x | = | 459 | x | x | + | 306 | x | + | 51 |