There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(144x - 144)}{({(\frac{-288x}{π} + 144{x}^{2}{π}^{2} + 144 + 25)}^{\frac{1}{2}}{π}^{2})} + \frac{12cos(\frac{x}{2})}{π}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{144x}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}π^{2}} - \frac{144}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}π^{2}} + \frac{12cos(\frac{1}{2}x)}{π}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{144x}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}π^{2}} - \frac{144}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}π^{2}} + \frac{12cos(\frac{1}{2}x)}{π}\right)}{dx}\\=&\frac{144(\frac{\frac{-1}{2}(\frac{-288}{π} + 144π^{2}*2x + 0)}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}})x}{π^{2}} + \frac{144}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}π^{2}} - \frac{144(\frac{\frac{-1}{2}(\frac{-288}{π} + 144π^{2}*2x + 0)}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}})}{π^{2}} + 0 + \frac{12*-sin(\frac{1}{2}x)*\frac{1}{2}}{π}\\=& - \frac{20736x^{2}}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}} + \frac{20736x}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}π^{3}} + \frac{144}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}π^{2}} + \frac{20736x}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}} - \frac{20736}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}π^{3}} - \frac{6sin(\frac{1}{2}x)}{π}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!