本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(144x - 144)}{({(\frac{-288x}{π} + 144{x}^{2}{π}^{2} + 144 + 25)}^{\frac{1}{2}}{π}^{2})} + \frac{12cos(\frac{x}{2})}{π} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{144x}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}π^{2}} - \frac{144}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}π^{2}} + \frac{12cos(\frac{1}{2}x)}{π}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{144x}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}π^{2}} - \frac{144}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}π^{2}} + \frac{12cos(\frac{1}{2}x)}{π}\right)}{dx}\\=&\frac{144(\frac{\frac{-1}{2}(\frac{-288}{π} + 144π^{2}*2x + 0)}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}})x}{π^{2}} + \frac{144}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}π^{2}} - \frac{144(\frac{\frac{-1}{2}(\frac{-288}{π} + 144π^{2}*2x + 0)}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}})}{π^{2}} + 0 + \frac{12*-sin(\frac{1}{2}x)*\frac{1}{2}}{π}\\=& - \frac{20736x^{2}}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}} + \frac{20736x}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}π^{3}} + \frac{144}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}π^{2}} + \frac{20736x}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}} - \frac{20736}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}π^{3}} - \frac{6sin(\frac{1}{2}x)}{π}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!