There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{a{x}^{4}}{(f{x}^{2} + gx + h)} + \frac{b{x}^{3}}{(f{x}^{2} + gx + h)} + \frac{c{x}^{2}}{(f{x}^{2} + gx + h)} + \frac{dx}{(f{x}^{2} + gx + h)} + \frac{e}{(f{x}^{2} + gx + h)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ax^{4}}{(fx^{2} + gx + h)} + \frac{bx^{3}}{(fx^{2} + gx + h)} + \frac{cx^{2}}{(fx^{2} + gx + h)} + \frac{dx}{(fx^{2} + gx + h)} + \frac{e}{(fx^{2} + gx + h)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ax^{4}}{(fx^{2} + gx + h)} + \frac{bx^{3}}{(fx^{2} + gx + h)} + \frac{cx^{2}}{(fx^{2} + gx + h)} + \frac{dx}{(fx^{2} + gx + h)} + \frac{e}{(fx^{2} + gx + h)}\right)}{dx}\\=&(\frac{-(f*2x + g + 0)}{(fx^{2} + gx + h)^{2}})ax^{4} + \frac{a*4x^{3}}{(fx^{2} + gx + h)} + (\frac{-(f*2x + g + 0)}{(fx^{2} + gx + h)^{2}})bx^{3} + \frac{b*3x^{2}}{(fx^{2} + gx + h)} + (\frac{-(f*2x + g + 0)}{(fx^{2} + gx + h)^{2}})cx^{2} + \frac{c*2x}{(fx^{2} + gx + h)} + (\frac{-(f*2x + g + 0)}{(fx^{2} + gx + h)^{2}})dx + \frac{d}{(fx^{2} + gx + h)} + (\frac{-(f*2x + g + 0)}{(fx^{2} + gx + h)^{2}})e + \frac{0}{(fx^{2} + gx + h)}\\=&\frac{-2afx^{5}}{(fx^{2} + gx + h)^{2}} - \frac{agx^{4}}{(fx^{2} + gx + h)^{2}} + \frac{4ax^{3}}{(fx^{2} + gx + h)} - \frac{2fbx^{4}}{(fx^{2} + gx + h)^{2}} - \frac{gbx^{3}}{(fx^{2} + gx + h)^{2}} + \frac{3bx^{2}}{(fx^{2} + gx + h)} - \frac{2fcx^{3}}{(fx^{2} + gx + h)^{2}} - \frac{gcx^{2}}{(fx^{2} + gx + h)^{2}} + \frac{2cx}{(fx^{2} + gx + h)} - \frac{2fdx^{2}}{(fx^{2} + gx + h)^{2}} - \frac{gdx}{(fx^{2} + gx + h)^{2}} + \frac{d}{(fx^{2} + gx + h)} - \frac{2fxe}{(fx^{2} + gx + h)^{2}} - \frac{ge}{(fx^{2} + gx + h)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!