There are 1 questions in this calculation: for each question, the 1 derivative of q is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{lk}{(nq)} + p(d - l + \frac{n}{l}) + \frac{la}{q} + bl + \frac{1}{2}h(q - 1) + \frac{\frac{1}{2}kq(dn - ln + l)}{l}\ with\ respect\ to\ q:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{lk}{nq} + pd - lp + \frac{np}{l} + \frac{la}{q} + lb + \frac{1}{2}hq - \frac{1}{2}h + \frac{\frac{1}{2}kndq}{l} - \frac{1}{2}knq + \frac{1}{2}kq\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{lk}{nq} + pd - lp + \frac{np}{l} + \frac{la}{q} + lb + \frac{1}{2}hq - \frac{1}{2}h + \frac{\frac{1}{2}kndq}{l} - \frac{1}{2}knq + \frac{1}{2}kq\right)}{dq}\\=&\frac{lk*-1}{nq^{2}} + 0 + 0 + 0 + \frac{la*-1}{q^{2}} + 0 + \frac{1}{2}h + 0 + \frac{\frac{1}{2}knd}{l} - \frac{1}{2}kn + \frac{1}{2}k\\=&\frac{-lk}{nq^{2}} - \frac{la}{q^{2}} + \frac{h}{2} + \frac{knd}{2l} - \frac{kn}{2} + \frac{k}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!