There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(x - \frac{(x + 1 + 2 + 3 + 4 + 5 + 6)}{7})}{sqrt(\frac{({x}^{2} + 91)}{7} - \frac{{((x + 1 + 2 + 3 + 4 + 5 + 6))}^{2}}{49} + {1}^{-5})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{6}{7}x}{sqrt(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)} - \frac{3}{sqrt(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{6}{7}x}{sqrt(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)} - \frac{3}{sqrt(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)}\right)}{dx}\\=&\frac{\frac{6}{7}}{sqrt(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)} + \frac{\frac{6}{7}x*-(\frac{6}{49}*2x - \frac{6}{7} + 0)*\frac{1}{2}}{(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)^{\frac{1}{2}}} - \frac{3*-(\frac{6}{49}*2x - \frac{6}{7} + 0)*\frac{1}{2}}{(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)^{\frac{1}{2}}}\\=&\frac{6}{7sqrt(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)} - \frac{36x^{2}}{343(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)^{\frac{3}{2}}} + \frac{36x}{49(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)^{\frac{3}{2}}} - \frac{9}{7(\frac{6}{49}x^{2} - \frac{6}{7}x + 5)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!