There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{((\frac{((ln(y + 300) - 3.91202))}{2.888}) + ((\frac{ln((\frac{x}{4}) + 1 - (y + 250))}{ln(2)*250})))}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.00133333333333333ln(0.25x - y - 249)}{ln(2)} + 0.115420129270545ln(y + 300) - 0.451525854108957\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.00133333333333333ln(0.25x - y - 249)}{ln(2)} + 0.115420129270545ln(y + 300) - 0.451525854108957\right)}{dx}\\=&\frac{0.00133333333333333*-*0ln(0.25x - y - 249)}{ln^{2}(2)(2)} + \frac{0.00133333333333333(0.25 + 0 + 0)}{ln(2)(0.25x - y - 249)} + \frac{0.115420129270545(0 + 0)}{(y + 300)} + 0\\=&\frac{0.000333333333333333}{(0.25x - y - 249)ln(2)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{0.000333333333333333}{(0.25x - y - 249)ln(2)}\right)}{dx}\\=&\frac{0.000333333333333333(\frac{-(0.25 + 0 + 0)}{(0.25x - y - 249)^{2}})}{ln(2)} + \frac{0.000333333333333333*-0}{(0.25x - y - 249)ln^{2}(2)(2)}\\=&\frac{-0.0000833333333}{(0.25x - y - 249)(0.25x - y - 249)ln(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!