There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{(1 + {(1 - {e}^{2}x)}^{\frac{1}{2}})}{(1 - {(1 - {e}^{2}x)}^{\frac{1}{2}})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{(-xe^{2} + 1)^{\frac{1}{2}}}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)} + \frac{1}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{(-xe^{2} + 1)^{\frac{1}{2}}}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)} + \frac{1}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)})\right)}{dx}\\=&\frac{(\frac{(\frac{\frac{1}{2}(-e^{2} - x*2e*0 + 0)}{(-xe^{2} + 1)^{\frac{1}{2}}})}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)} + (-xe^{2} + 1)^{\frac{1}{2}}(\frac{-(-(\frac{\frac{1}{2}(-e^{2} - x*2e*0 + 0)}{(-xe^{2} + 1)^{\frac{1}{2}}}) + 0)}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)^{2}}) + (\frac{-(-(\frac{\frac{1}{2}(-e^{2} - x*2e*0 + 0)}{(-xe^{2} + 1)^{\frac{1}{2}}}) + 0)}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)^{2}}))}{(\frac{(-xe^{2} + 1)^{\frac{1}{2}}}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)} + \frac{1}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)})}\\=&\frac{-e^{2}}{2(-xe^{2} + 1)^{\frac{1}{2}}(\frac{(-xe^{2} + 1)^{\frac{1}{2}}}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)} + \frac{1}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)})(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)} - \frac{e^{2}}{2(\frac{(-xe^{2} + 1)^{\frac{1}{2}}}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)} + \frac{1}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)})(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)^{2}} - \frac{e^{2}}{2(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)^{2}(-xe^{2} + 1)^{\frac{1}{2}}(\frac{(-xe^{2} + 1)^{\frac{1}{2}}}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)} + \frac{1}{(-(-xe^{2} + 1)^{\frac{1}{2}} + 1)})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!