There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{1}{2} - sin(x))}{(\frac{1}{2} + {(\frac{cos(x)}{(1 + cos(x))})}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{sin(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})} + \frac{\frac{1}{2}}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{sin(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})} + \frac{\frac{1}{2}}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})}\right)}{dx}\\=& - (\frac{-((\frac{-2(-sin(x) + 0)}{(cos(x) + 1)^{3}})cos^{2}(x) + \frac{-2cos(x)sin(x)}{(cos(x) + 1)^{2}} + 0)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})^{2}})sin(x) - \frac{cos(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})} + \frac{1}{2}(\frac{-((\frac{-2(-sin(x) + 0)}{(cos(x) + 1)^{3}})cos^{2}(x) + \frac{-2cos(x)sin(x)}{(cos(x) + 1)^{2}} + 0)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})^{2}})\\=&\frac{2sin^{2}(x)cos^{2}(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})^{2}(cos(x) + 1)^{3}} - \frac{2sin^{2}(x)cos(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})^{2}(cos(x) + 1)^{2}} - \frac{cos(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})} - \frac{sin(x)cos^{2}(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})^{2}(cos(x) + 1)^{3}} + \frac{sin(x)cos(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})^{2}(cos(x) + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!