本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(\frac{1}{2} - sin(x))}{(\frac{1}{2} + {(\frac{cos(x)}{(1 + cos(x))})}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{sin(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})} + \frac{\frac{1}{2}}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{sin(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})} + \frac{\frac{1}{2}}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})}\right)}{dx}\\=& - (\frac{-((\frac{-2(-sin(x) + 0)}{(cos(x) + 1)^{3}})cos^{2}(x) + \frac{-2cos(x)sin(x)}{(cos(x) + 1)^{2}} + 0)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})^{2}})sin(x) - \frac{cos(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})} + \frac{1}{2}(\frac{-((\frac{-2(-sin(x) + 0)}{(cos(x) + 1)^{3}})cos^{2}(x) + \frac{-2cos(x)sin(x)}{(cos(x) + 1)^{2}} + 0)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})^{2}})\\=&\frac{2sin^{2}(x)cos^{2}(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})^{2}(cos(x) + 1)^{3}} - \frac{2sin^{2}(x)cos(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})^{2}(cos(x) + 1)^{2}} - \frac{cos(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})} - \frac{sin(x)cos^{2}(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})^{2}(cos(x) + 1)^{3}} + \frac{sin(x)cos(x)}{(\frac{cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{1}{2})^{2}(cos(x) + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!