There are 7 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/7]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{(a + 1)}}{(a + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{x}^{(a + 1)}}{(a + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{x}^{(a + 1)}}{(a + 1)}\right)}{dx}\\=&(\frac{-(0 + 0)}{(a + 1)^{2}}){x}^{(a + 1)} + \frac{({x}^{(a + 1)}((0 + 0)ln(x) + \frac{(a + 1)(1)}{(x)}))}{(a + 1)}\\=&\frac{a{x}^{(a + 1)}}{(a + 1)x} + \frac{{x}^{(a + 1)}}{(a + 1)x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/7]Find\ the\ first\ derivative\ of\ function\ \frac{{a}^{x}}{ln(a)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{a}^{x}}{ln(a)}\right)}{dx}\\=&\frac{({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{ln(a)} + \frac{{a}^{x}*-0}{ln^{2}(a)(a)}\\=&{a}^{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/7]Find\ the\ first\ derivative\ of\ function\ xlog_{a}^{x} - \frac{x}{ln(a)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xlog_{a}^{x} - \frac{x}{ln(a)}\right)}{dx}\\=&log_{a}^{x} + x(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{a}^{x}}{(a)})}{(ln(a))}) - \frac{1}{ln(a)} - \frac{x*-0}{ln^{2}(a)(a)}\\=&log_{a}^{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/7]Find\ the\ first\ derivative\ of\ function\ xln(x) - x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(x) - x\right)}{dx}\\=&ln(x) + \frac{x}{(x)} - 1\\=&ln(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[5/7]Find\ the\ first\ derivative\ of\ function\ -cos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -cos(x)\right)}{dx}\\=&--sin(x)\\=&sin(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[6/7]Find\ the\ first\ derivative\ of\ function\ sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x)\right)}{dx}\\=&cos(x)\\=&cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[7/7]Find\ the\ first\ derivative\ of\ function\ -ln(cos(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -ln(cos(x))\right)}{dx}\\=&\frac{--sin(x)}{(cos(x))}\\=&\frac{sin(x)}{cos(x)}\\ \end{split}\end{equation} \]
>>注:本次最多计算 7 道题。
Your problem has not been solved here? Please go to the Hot Problems section!