There are 1 questions in this calculation: for each question, the 1 derivative of e is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ b(-((csqrt(e + c)m - \frac{csqrt(e - 1)}{(c{m}^{2} - 2cm + 1)})(1 + csqrt(e - s{e}^{2}))))\ with\ respect\ to\ e:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - bc^{2}msqrt(e - se^{2})sqrt(e + c) - bcmsqrt(e + c) + \frac{bc^{2}sqrt(e - se^{2})sqrt(e - 1)}{(cm^{2} - 2cm + 1)} + \frac{bcsqrt(e - 1)}{(cm^{2} - 2cm + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - bc^{2}msqrt(e - se^{2})sqrt(e + c) - bcmsqrt(e + c) + \frac{bc^{2}sqrt(e - se^{2})sqrt(e - 1)}{(cm^{2} - 2cm + 1)} + \frac{bcsqrt(e - 1)}{(cm^{2} - 2cm + 1)}\right)}{de}\\=& - \frac{bc^{2}m(1 - s*2e)*\frac{1}{2}sqrt(e + c)}{(e - se^{2})^{\frac{1}{2}}} - \frac{bc^{2}msqrt(e - se^{2})(1 + 0)*\frac{1}{2}}{(e + c)^{\frac{1}{2}}} - \frac{bcm(1 + 0)*\frac{1}{2}}{(e + c)^{\frac{1}{2}}} + (\frac{-(0 + 0 + 0)}{(cm^{2} - 2cm + 1)^{2}})bc^{2}sqrt(e - se^{2})sqrt(e - 1) + \frac{bc^{2}(1 - s*2e)*\frac{1}{2}sqrt(e - 1)}{(cm^{2} - 2cm + 1)(e - se^{2})^{\frac{1}{2}}} + \frac{bc^{2}sqrt(e - se^{2})(1 + 0)*\frac{1}{2}}{(cm^{2} - 2cm + 1)(e - 1)^{\frac{1}{2}}} + (\frac{-(0 + 0 + 0)}{(cm^{2} - 2cm + 1)^{2}})bcsqrt(e - 1) + \frac{bc(1 + 0)*\frac{1}{2}}{(cm^{2} - 2cm + 1)(e - 1)^{\frac{1}{2}}}\\=& - \frac{bc^{2}msqrt(e + c)}{2(e - se^{2})^{\frac{1}{2}}} + \frac{bc^{2}msesqrt(e + c)}{(e - se^{2})^{\frac{1}{2}}} - \frac{bc^{2}msqrt(e - se^{2})}{2(e + c)^{\frac{1}{2}}} - \frac{bcm}{2(e + c)^{\frac{1}{2}}} + \frac{bc^{2}sqrt(e - 1)}{2(cm^{2} - 2cm + 1)(e - se^{2})^{\frac{1}{2}}} - \frac{bc^{2}sesqrt(e - 1)}{(cm^{2} - 2cm + 1)(e - se^{2})^{\frac{1}{2}}} + \frac{bc^{2}sqrt(e - se^{2})}{2(cm^{2} - 2cm + 1)(e - 1)^{\frac{1}{2}}} + \frac{bc}{2(cm^{2} - 2cm + 1)(e - 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!