There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(-2{(1 + x)}^{\frac{1}{2}} + {(-8({x}^{\frac{1}{2}})ln(x))}^{\frac{1}{2}})}{(4ln(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{-1}{2}(x + 1)^{\frac{1}{2}}}{ln(x)} - \frac{\frac{1}{4}*8^{\frac{1}{2}}x^{\frac{1}{4}}}{ln^{\frac{1}{2}}(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{-1}{2}(x + 1)^{\frac{1}{2}}}{ln(x)} - \frac{\frac{1}{4}*8^{\frac{1}{2}}x^{\frac{1}{4}}}{ln^{\frac{1}{2}}(x)}\right)}{dx}\\=&\frac{\frac{-1}{2}(\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}})}{ln(x)} - \frac{\frac{1}{2}(x + 1)^{\frac{1}{2}}*-1}{ln^{2}(x)(x)} - \frac{\frac{1}{4}*8^{\frac{1}{2}}*\frac{1}{4}}{x^{\frac{3}{4}}ln^{\frac{1}{2}}(x)} - \frac{\frac{1}{4}*8^{\frac{1}{2}}x^{\frac{1}{4}}*\frac{-1}{2}}{ln^{\frac{3}{2}}(x)(x)}\\=&\frac{-1}{4(x + 1)^{\frac{1}{2}}ln(x)} + \frac{(x + 1)^{\frac{1}{2}}}{2xln^{2}(x)} - \frac{8^{\frac{1}{2}}}{16x^{\frac{3}{4}}ln^{\frac{1}{2}}(x)} + \frac{8^{\frac{1}{2}}}{8x^{\frac{3}{4}}ln^{\frac{3}{2}}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!