本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(-2{(1 + x)}^{\frac{1}{2}} + {(-8({x}^{\frac{1}{2}})ln(x))}^{\frac{1}{2}})}{(4ln(x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{-1}{2}(x + 1)^{\frac{1}{2}}}{ln(x)} - \frac{\frac{1}{4}*8^{\frac{1}{2}}x^{\frac{1}{4}}}{ln^{\frac{1}{2}}(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{-1}{2}(x + 1)^{\frac{1}{2}}}{ln(x)} - \frac{\frac{1}{4}*8^{\frac{1}{2}}x^{\frac{1}{4}}}{ln^{\frac{1}{2}}(x)}\right)}{dx}\\=&\frac{\frac{-1}{2}(\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}})}{ln(x)} - \frac{\frac{1}{2}(x + 1)^{\frac{1}{2}}*-1}{ln^{2}(x)(x)} - \frac{\frac{1}{4}*8^{\frac{1}{2}}*\frac{1}{4}}{x^{\frac{3}{4}}ln^{\frac{1}{2}}(x)} - \frac{\frac{1}{4}*8^{\frac{1}{2}}x^{\frac{1}{4}}*\frac{-1}{2}}{ln^{\frac{3}{2}}(x)(x)}\\=&\frac{-1}{4(x + 1)^{\frac{1}{2}}ln(x)} + \frac{(x + 1)^{\frac{1}{2}}}{2xln^{2}(x)} - \frac{8^{\frac{1}{2}}}{16x^{\frac{3}{4}}ln^{\frac{1}{2}}(x)} + \frac{8^{\frac{1}{2}}}{8x^{\frac{3}{4}}ln^{\frac{3}{2}}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!