There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{0.36x}{(80 + 0.05*1.05*1.05 + 1.2x)} + \frac{0.0012{x}^{2}*0.55}{(180*105 + 0.0015{x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.36x}{(1.2x + 80.055125)} + \frac{0.00066x^{2}}{(0.0015x + 18900)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.36x}{(1.2x + 80.055125)} + \frac{0.00066x^{2}}{(0.0015x + 18900)}\right)}{dx}\\=&0.36(\frac{-(1.2 + 0)}{(1.2x + 80.055125)^{2}})x + \frac{0.36}{(1.2x + 80.055125)} + 0.00066(\frac{-(0.0015 + 0)}{(0.0015x + 18900)^{2}})x^{2} + \frac{0.00066*2x}{(0.0015x + 18900)}\\=&\frac{-0.432x}{(1.2x + 80.055125)(1.2x + 80.055125)} - \frac{0.00000099x^{2}}{(0.0015x + 18900)(0.0015x + 18900)} + \frac{0.00132x}{(0.0015x + 18900)} + \frac{0.36}{(1.2x + 80.055125)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!