There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ab}{ts({s}^{2} + s)(1 - \frac{ab}{ts({s}^{2} + s)} - \frac{1}{ts} + \frac{ab{\frac{1}{t}}^{2}{\frac{1}{s}}^{2}}{({s}^{2} + s)})}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ba}{(s^{2} + s)(\frac{-ba}{(s^{2} + s)ts} - \frac{1}{ts} + \frac{ba}{(s^{2} + s)t^{2}s^{2}} + 1)ts}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ba}{(s^{2} + s)(\frac{-ba}{(s^{2} + s)ts} - \frac{1}{ts} + \frac{ba}{(s^{2} + s)t^{2}s^{2}} + 1)ts}\right)}{da}\\=&\frac{(\frac{-(0 + 0)}{(s^{2} + s)^{2}})ba}{(\frac{-ba}{(s^{2} + s)ts} - \frac{1}{ts} + \frac{ba}{(s^{2} + s)t^{2}s^{2}} + 1)ts} + \frac{(\frac{-(\frac{-(\frac{-(0 + 0)}{(s^{2} + s)^{2}})ba}{ts} - \frac{b}{(s^{2} + s)ts} + 0 + \frac{(\frac{-(0 + 0)}{(s^{2} + s)^{2}})ba}{t^{2}s^{2}} + \frac{b}{(s^{2} + s)t^{2}s^{2}} + 0)}{(\frac{-ba}{(s^{2} + s)ts} - \frac{1}{ts} + \frac{ba}{(s^{2} + s)t^{2}s^{2}} + 1)^{2}})ba}{(s^{2} + s)ts} + \frac{b}{(s^{2} + s)(\frac{-ba}{(s^{2} + s)ts} - \frac{1}{ts} + \frac{ba}{(s^{2} + s)t^{2}s^{2}} + 1)ts}\\=&\frac{b^{2}a}{(\frac{-ba}{(s^{2} + s)ts} - \frac{1}{ts} + \frac{ba}{(s^{2} + s)t^{2}s^{2}} + 1)^{2}(s^{2} + s)^{2}t^{2}s^{2}} - \frac{b^{2}a}{(\frac{-ba}{(s^{2} + s)ts} - \frac{1}{ts} + \frac{ba}{(s^{2} + s)t^{2}s^{2}} + 1)^{2}(s^{2} + s)^{2}t^{3}s^{3}} + \frac{b}{(s^{2} + s)(\frac{-ba}{(s^{2} + s)ts} - \frac{1}{ts} + \frac{ba}{(s^{2} + s)t^{2}s^{2}} + 1)ts}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!