There are 4 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/4]Find\ the\ first\ derivative\ of\ function\ {x}^{2} + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2} + 1\right)}{dx}\\=&2x + 0\\=&2x\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/4]Find\ the\ first\ derivative\ of\ function\ 2x + 3y\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x + 3y\right)}{dx}\\=&2 + 0\\=&2\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/4]Find\ the\ first\ derivative\ of\ function\ sin(x) + cos(2{x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x) + cos(2x^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x) + cos(2x^{2})\right)}{dx}\\=&cos(x) + -sin(2x^{2})*2*2x\\=&cos(x) - 4xsin(2x^{2})\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/4]Find\ the\ first\ derivative\ of\ function\ sqrt(9x + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(9x + 1)\right)}{dx}\\=&\frac{(9 + 0)*\frac{1}{2}}{(9x + 1)^{\frac{1}{2}}}\\=&\frac{9}{2(9x + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!