There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({(x + 1)}^{\frac{1}{2}}{(x + 2)}^{\frac{1}{2}})}{({(x + 3)}^{\frac{1}{2}}{(x - 4)}^{\frac{1}{2}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(x + 1)^{\frac{1}{2}}(x + 2)^{\frac{1}{2}}}{(x + 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(x + 1)^{\frac{1}{2}}(x + 2)^{\frac{1}{2}}}{(x + 3)}\right)}{dx}\\=&\frac{(\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}})(x + 2)^{\frac{1}{2}}}{(x + 3)} + \frac{(x + 1)^{\frac{1}{2}}(\frac{\frac{1}{2}(1 + 0)}{(x + 2)^{\frac{1}{2}}})}{(x + 3)} + (x + 1)^{\frac{1}{2}}(x + 2)^{\frac{1}{2}}(\frac{-(1 + 0)}{(x + 3)^{2}})\\=&\frac{-(x + 1)^{\frac{1}{2}}(x + 2)^{\frac{1}{2}}}{(x + 3)^{2}} + \frac{(x + 1)^{\frac{1}{2}}}{2(x + 2)^{\frac{1}{2}}(x + 3)} + \frac{(x + 2)^{\frac{1}{2}}}{2(x + 1)^{\frac{1}{2}}(x + 3)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!