There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{2}{({v}^{2} + 2v - 1)})}^{4} - 4v{\frac{1}{({v}^{2} + 2v - 1)}}^{2} + {({v}^{2} - 1)}^{2}{\frac{1}{({v}^{2} + 2v - 1)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{4v}{(v^{2} + 2v - 1)^{2}} + \frac{v^{4}}{(v^{2} + 2v - 1)^{2}} - \frac{2v^{2}}{(v^{2} + 2v - 1)^{2}} + \frac{1}{(v^{2} + 2v - 1)^{2}} + \frac{16}{(v^{2} + 2v - 1)^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{4v}{(v^{2} + 2v - 1)^{2}} + \frac{v^{4}}{(v^{2} + 2v - 1)^{2}} - \frac{2v^{2}}{(v^{2} + 2v - 1)^{2}} + \frac{1}{(v^{2} + 2v - 1)^{2}} + \frac{16}{(v^{2} + 2v - 1)^{4}}\right)}{dx}\\=& - 4(\frac{-2(0 + 0 + 0)}{(v^{2} + 2v - 1)^{3}})v + 0 + (\frac{-2(0 + 0 + 0)}{(v^{2} + 2v - 1)^{3}})v^{4} + 0 - 2(\frac{-2(0 + 0 + 0)}{(v^{2} + 2v - 1)^{3}})v^{2} + 0 + (\frac{-2(0 + 0 + 0)}{(v^{2} + 2v - 1)^{3}}) + 16(\frac{-4(0 + 0 + 0)}{(v^{2} + 2v - 1)^{5}})\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!